(**************************************************************************) (* ___ *) (* ||M|| *) (* ||A|| A project by Andrea Asperti *) (* ||T|| *) (* ||I|| Developers: *) (* ||T|| The HELM team. *) (* ||A|| http://helm.cs.unibo.it *) (* \ / *) (* \ / This file is distributed under the terms of the *) (* v GNU General Public License Version 2 *) (* *) (**************************************************************************) include "basic_2/substitution/ldrop.ma". include "basic_2/static/sh.ma". (* STATIC TYPE ASSIGNMENT ON TERMS ******************************************) inductive sta (h:sh): lenv → relation term ≝ | sta_sort: ∀L,k. sta h L (⋆k) (⋆(next h k)) | sta_ldef: ∀L,K,V,W,U,i. ⇩[0, i] L ≡ K. ⓓV → sta h K V W → ⇧[0, i + 1] W ≡ U → sta h L (#i) U | sta_ldec: ∀L,K,W,V,U,i. ⇩[0, i] L ≡ K. ⓛW → sta h K W V → ⇧[0, i + 1] W ≡ U → sta h L (#i) U | sta_bind: ∀I,L,V,T,U. sta h (L. ⓑ{I} V) T U → sta h L (ⓑ{I}V.T) (ⓑ{I}V.U) | sta_appl: ∀L,V,T,U. sta h L T U → sta h L (ⓐV.T) (ⓐV.U) | sta_cast: ∀L,W,T,U. sta h L T U → sta h L (ⓝW. T) U . interpretation "static type assignment (term)" 'StaticType h L T U = (sta h L T U). (* Basic inversion lemmas ************************************************) fact sta_inv_sort1_aux: ∀h,L,T,U. ⦃h, L⦄ ⊢ T • U → ∀k0. T = ⋆k0 → U = ⋆(next h k0). #h #L #T #U * -L -T -U [ #L #k #k0 #H destruct // | #L #K #V #W #U #i #_ #_ #_ #k0 #H destruct | #L #K #W #V #U #i #_ #_ #_ #k0 #H destruct | #I #L #V #T #U #_ #k0 #H destruct | #L #V #T #U #_ #k0 #H destruct | #L #W #T #U #_ #k0 #H destruct qed. (* Basic_1: was: sty0_gen_sort *) lemma sta_inv_sort1: ∀h,L,U,k. ⦃h, L⦄ ⊢ ⋆k • U → U = ⋆(next h k). /2 width=4/ qed-. fact sta_inv_lref1_aux: ∀h,L,T,U. ⦃h, L⦄ ⊢ T • U → ∀j. T = #j → (∃∃K,V,W. ⇩[0, j] L ≡ K. ⓓV & ⦃h, K⦄ ⊢ V • W & ⇧[0, j + 1] W ≡ U ) ∨ (∃∃K,W,V. ⇩[0, j] L ≡ K. ⓛW & ⦃h, K⦄ ⊢ W • V & ⇧[0, j + 1] W ≡ U ). #h #L #T #U * -L -T -U [ #L #k #j #H destruct | #L #K #V #W #U #i #HLK #HVW #HWU #j #H destruct /3 width=6/ | #L #K #W #V #U #i #HLK #HWV #HWU #j #H destruct /3 width=6/ | #I #L #V #T #U #_ #j #H destruct | #L #V #T #U #_ #j #H destruct | #L #W #T #U #_ #j #H destruct ] qed. (* Basic_1: was sty0_gen_lref *) lemma sta_inv_lref1: ∀h,L,U,i. ⦃h, L⦄ ⊢ #i • U → (∃∃K,V,W. ⇩[0, i] L ≡ K. ⓓV & ⦃h, K⦄ ⊢ V • W & ⇧[0, i + 1] W ≡ U ) ∨ (∃∃K,W,V. ⇩[0, i] L ≡ K. ⓛW & ⦃h, K⦄ ⊢ W • V & ⇧[0, i + 1] W ≡ U ). /2 width=3/ qed-. fact sta_inv_bind1_aux: ∀h,L,T,U. ⦃h, L⦄ ⊢ T • U → ∀J,X,Y. T = ⓑ{J}Y.X → ∃∃Z. ⦃h, L.ⓑ{J}Y⦄ ⊢ X • Z & U = ⓑ{J}Y.Z. #h #L #T #U * -L -T -U [ #L #k #J #X #Y #H destruct | #L #K #V #W #U #i #_ #_ #_ #J #X #Y #H destruct | #L #K #W #V #U #i #_ #_ #_ #J #X #Y #H destruct | #I #L #V #T #U #HTU #J #X #Y #H destruct /2 width=3/ | #L #V #T #U #_ #J #X #Y #H destruct | #L #W #T #U #_ #J #X #Y #H destruct ] qed. (* Basic_1: was: sty0_gen_bind *) lemma sta_inv_bind1: ∀h,J,L,Y,X,U. ⦃h, L⦄ ⊢ ⓑ{J}Y.X • U → ∃∃Z. ⦃h, L.ⓑ{J}Y⦄ ⊢ X • Z & U = ⓑ{J}Y.Z. /2 width=3/ qed-. fact sta_inv_appl1_aux: ∀h,L,T,U. ⦃h, L⦄ ⊢ T • U → ∀X,Y. T = ⓐY.X → ∃∃Z. ⦃h, L⦄ ⊢ X • Z & U = ⓐY.Z. #h #L #T #U * -L -T -U [ #L #k #X #Y #H destruct | #L #K #V #W #U #i #_ #_ #_ #X #Y #H destruct | #L #K #W #V #U #i #_ #_ #_ #X #Y #H destruct | #I #L #V #T #U #_ #X #Y #H destruct | #L #V #T #U #HTU #X #Y #H destruct /2 width=3/ | #L #W #T #U #_ #X #Y #H destruct ] qed. (* Basic_1: was: sty0_gen_appl *) lemma sta_inv_appl1: ∀h,L,Y,X,U. ⦃h, L⦄ ⊢ ⓐY.X • U → ∃∃Z. ⦃h, L⦄ ⊢ X • Z & U = ⓐY.Z. /2 width=3/ qed-. fact sta_inv_cast1_aux: ∀h,L,T,U. ⦃h, L⦄ ⊢ T • U → ∀X,Y. T = ⓝY.X → ⦃h, L⦄ ⊢ X • U. #h #L #T #U * -L -T -U [ #L #k #X #Y #H destruct | #L #K #V #W #U #i #_ #_ #_ #X #Y #H destruct | #L #K #W #V #U #i #_ #_ #_ #X #Y #H destruct | #I #L #V #T #U #_ #X #Y #H destruct | #L #V #T #U #_ #X #Y #H destruct | #L #W #T #U #HTU #X #Y #H destruct // ] qed. (* Basic_1: was: sty0_gen_cast *) lemma sta_inv_cast1: ∀h,L,X,Y,U. ⦃h, L⦄ ⊢ ⓝY.X • U → ⦃h, L⦄ ⊢ X • U. /2 width=4/ qed-.