(**************************************************************************) (* ___ *) (* ||M|| *) (* ||A|| A project by Andrea Asperti *) (* ||T|| *) (* ||I|| Developers: *) (* ||T|| The HELM team. *) (* ||A|| http://helm.cs.unibo.it *) (* \ / *) (* \ / This file is distributed under the terms of the *) (* v GNU General Public License Version 2 *) (* *) (**************************************************************************) notation "hvbox( L ⊢ break term 46 T1 ≈ break term 46 T2 )" non associative with precedence 45 for @{ 'Hom $L $T1 $T2 }. notation "hvbox( L ⊢ break 𝐇𝐑 ⦃ term 46 T ⦄ )" non associative with precedence 45 for @{ 'HdReducible $L $T }. notation "hvbox( L ⊢ break 𝐇𝐈 ⦃ term 46 T ⦄ )" non associative with precedence 45 for @{ 'NotHdReducible $L $T }. include "basic_2/grammar/term_simple.ma". (* SAME HEAD TERM FORMS *****************************************************) inductive tshf: relation term ≝ | tshf_atom: ∀I. tshf (⓪{I}) (⓪{I}) | tshf_abbr: ∀V1,V2,T1,T2. tshf (-ⓓV1. T1) (-ⓓV2. T2) | tshf_abst: ∀a,V1,V2,T1,T2. tshf (ⓛ{a}V1. T1) (ⓛ{a}V2. T2) | tshf_appl: ∀V1,V2,T1,T2. tshf T1 T2 → 𝐒⦃T1⦄ → 𝐒⦃T2⦄ → tshf (ⓐV1. T1) (ⓐV2. T2) . interpretation "same head form (term)" 'napart T1 T2 = (tshf T1 T2). (* Basic properties *********************************************************) lemma tshf_sym: ∀T1,T2. T1 ≈ T2 → T2 ≈ T1. #T1 #T2 #H elim H -T1 -T2 /2 width=1/ qed. lemma tshf_refl2: ∀T1,T2. T1 ≈ T2 → T2 ≈ T2. #T1 #T2 #H elim H -T1 -T2 // /2 width=1/ qed. lemma tshf_refl1: ∀T1,T2. T1 ≈ T2 → T1 ≈ T1. /3 width=2/ qed. lemma simple_tshf_repl_dx: ∀T1,T2. T1 ≈ T2 → 𝐒⦃T1⦄ → 𝐒⦃T2⦄. #T1 #T2 #H elim H -T1 -T2 // [ #V1 #V2 #T1 #T2 #H elim (simple_inv_bind … H) | #a #V1 #V2 #T1 #T2 #H elim (simple_inv_bind … H) ] qed. (**) (* remove from index *) lemma simple_tshf_repl_sn: ∀T1,T2. T1 ≈ T2 → 𝐒⦃T2⦄ → 𝐒⦃T1⦄. /3 width=3/ qed-. (* Basic inversion lemmas ***************************************************) fact tshf_inv_bind1_aux: ∀T1,T2. T1 ≈ T2 → ∀a,I,W1,U1. T1 = ⓑ{a,I}W1.U1 → ∃∃W2,U2. T2 = ⓑ{a,I}W2. U2 & (Bind2 a I = Bind2 false Abbr ∨ I = Abst). #T1 #T2 * -T1 -T2 [ #J #a #I #W1 #U1 #H destruct | #V1 #V2 #T1 #T2 #a #I #W1 #U1 #H destruct /3 width=3/ | #b #V1 #V2 #T1 #T2 #a #I #W1 #U1 #H destruct /3 width=3/ | #V1 #V2 #T1 #T2 #_ #_ #_ #a #I #W1 #U1 #H destruct ] qed. lemma tshf_inv_bind1: ∀a,I,W1,U1,T2. ⓑ{a,I}W1.U1 ≈ T2 → ∃∃W2,U2. T2 = ⓑ{a,I}W2. U2 & (Bind2 a I = Bind2 false Abbr ∨ I = Abst). /2 width=5/ qed-. fact tshf_inv_flat1_aux: ∀T1,T2. T1 ≈ T2 → ∀I,W1,U1. T1 = ⓕ{I}W1.U1 → ∃∃W2,U2. U1 ≈ U2 & 𝐒⦃U1⦄ & 𝐒⦃U2⦄ & I = Appl & T2 = ⓐW2. U2. #T1 #T2 * -T1 -T2 [ #J #I #W1 #U1 #H destruct | #V1 #V2 #T1 #T2 #I #W1 #U1 #H destruct | #a #V1 #V2 #T1 #T2 #I #W1 #U1 #H destruct | #V1 #V2 #T1 #T2 #HT12 #HT1 #HT2 #I #W1 #U1 #H destruct /2 width=5/ ] qed. lemma tshf_inv_flat1: ∀I,W1,U1,T2. ⓕ{I}W1.U1 ≈ T2 → ∃∃W2,U2. U1 ≈ U2 & 𝐒⦃U1⦄ & 𝐒⦃U2⦄ & I = Appl & T2 = ⓐW2. U2. /2 width=4/ qed-.