(**************************************************************************) (* ___ *) (* ||M|| *) (* ||A|| A project by Andrea Asperti *) (* ||T|| *) (* ||I|| Developers: *) (* ||T|| The HELM team. *) (* ||A|| http://helm.cs.unibo.it *) (* \ / *) (* \ / This file is distributed under the terms of the *) (* v GNU General Public License Version 2 *) (* *) (**************************************************************************) include "basic_2/notation/relations/prednormal_5.ma". include "basic_2/reduction/cnr.ma". include "basic_2/reduction/cpx.ma". (* NORMAL TERMS FOR CONTEXT-SENSITIVE EXTENDED REDUCTION ********************) definition cnx: ∀h. sd h → relation3 genv lenv term ≝ λh,o,G,L. NF … (cpx h o G L) (eq …). interpretation "normality for context-sensitive extended reduction (term)" 'PRedNormal h o L T = (cnx h o L T). (* Basic inversion lemmas ***************************************************) lemma cnx_inv_sort: ∀h,o,G,L,s. ⦃G, L⦄ ⊢ ➡[h, o] 𝐍⦃⋆s⦄ → deg h o s 0. #h #o #G #L #s #H elim (deg_total h o s) #d @(nat_ind_plus … d) -d // #d #_ #Hkd lapply (H (⋆(next h s)) ?) -H /2 width=2 by cpx_st/ -L -d #H lapply (destruct_tatom_tatom_aux … H) -H #H (**) (* destruct lemma needed *) lapply (destruct_sort_sort_aux … H) -H #H (**) (* destruct lemma needed *) lapply (next_lt h s) >H -H #H elim (lt_refl_false … H) qed-. lemma cnx_inv_delta: ∀h,o,I,G,L,K,V,i. ⬇[i] L ≡ K.ⓑ{I}V → ⦃G, L⦄ ⊢ ➡[h, o] 𝐍⦃#i⦄ → ⊥. #h #o #I #G #L #K #V #i #HLK #H elim (lift_total V 0 (i+1)) #W #HVW lapply (H W ?) -H [ /3 width=7 by cpx_delta/ ] -HLK #H destruct elim (lift_inv_lref2_be … HVW) -HVW /2 width=1 by ylt_inj/ qed-. lemma cnx_inv_abst: ∀h,o,a,G,L,V,T. ⦃G, L⦄ ⊢ ➡[h, o] 𝐍⦃ⓛ{a}V.T⦄ → ⦃G, L⦄ ⊢ ➡[h, o] 𝐍⦃V⦄ ∧ ⦃G, L.ⓛV⦄ ⊢ ➡[h, o] 𝐍⦃T⦄. #h #o #a #G #L #V1 #T1 #HVT1 @conj [ #V2 #HV2 lapply (HVT1 (ⓛ{a}V2.T1) ?) -HVT1 /2 width=2 by cpx_pair_sn/ -HV2 #H destruct // | #T2 #HT2 lapply (HVT1 (ⓛ{a}V1.T2) ?) -HVT1 /2 width=2 by cpx_bind/ -HT2 #H destruct // ] qed-. lemma cnx_inv_abbr: ∀h,o,G,L,V,T. ⦃G, L⦄ ⊢ ➡[h, o] 𝐍⦃-ⓓV.T⦄ → ⦃G, L⦄ ⊢ ➡[h, o] 𝐍⦃V⦄ ∧ ⦃G, L.ⓓV⦄ ⊢ ➡[h, o] 𝐍⦃T⦄. #h #o #G #L #V1 #T1 #HVT1 @conj [ #V2 #HV2 lapply (HVT1 (-ⓓV2.T1) ?) -HVT1 /2 width=2 by cpx_pair_sn/ -HV2 #H destruct // | #T2 #HT2 lapply (HVT1 (-ⓓV1.T2) ?) -HVT1 /2 width=2 by cpx_bind/ -HT2 #H destruct // ] qed-. lemma cnx_inv_zeta: ∀h,o,G,L,V,T. ⦃G, L⦄ ⊢ ➡[h, o] 𝐍⦃+ⓓV.T⦄ → ⊥. #h #o #G #L #V #T #H elim (is_lift_dec T 0 1) [ * #U #HTU lapply (H U ?) -H /2 width=3 by cpx_zeta/ #H destruct elim (lift_inv_pair_xy_y … HTU) | #HT elim (cpr_delift G(⋆) V T (⋆.ⓓV) 0) // #T2 #T1 #HT2 #HT12 lapply (H (+ⓓV.T2) ?) -H /5 width=1 by cpr_cpx, tpr_cpr, cpr_bind/ -HT2 #H destruct /3 width=2 by ex_intro/ ] qed-. lemma cnx_inv_appl: ∀h,o,G,L,V,T. ⦃G, L⦄ ⊢ ➡[h, o] 𝐍⦃ⓐV.T⦄ → ∧∧ ⦃G, L⦄ ⊢ ➡[h, o] 𝐍⦃V⦄ & ⦃G, L⦄ ⊢ ➡[h, o] 𝐍⦃T⦄ & 𝐒⦃T⦄. #h #o #G #L #V1 #T1 #HVT1 @and3_intro [ #V2 #HV2 lapply (HVT1 (ⓐV2.T1) ?) -HVT1 /2 width=1 by cpx_pair_sn/ -HV2 #H destruct // | #T2 #HT2 lapply (HVT1 (ⓐV1.T2) ?) -HVT1 /2 width=1 by cpx_flat/ -HT2 #H destruct // | generalize in match HVT1; -HVT1 elim T1 -T1 * // #a * #W1 #U1 #_ #_ #H [ elim (lift_total V1 0 1) #V2 #HV12 lapply (H (ⓓ{a}W1.ⓐV2.U1) ?) -H /3 width=3 by cpr_cpx, cpr_theta/ -HV12 #H destruct | lapply (H (ⓓ{a}ⓝW1.V1.U1) ?) -H /3 width=1 by cpr_cpx, cpr_beta/ #H destruct ] ] qed-. lemma cnx_inv_eps: ∀h,o,G,L,V,T. ⦃G, L⦄ ⊢ ➡[h, o] 𝐍⦃ⓝV.T⦄ → ⊥. #h #o #G #L #V #T #H lapply (H T ?) -H /2 width=4 by cpx_eps, discr_tpair_xy_y/ qed-. (* Basic forward lemmas *****************************************************) lemma cnx_fwd_cnr: ∀h,o,G,L,T. ⦃G, L⦄ ⊢ ➡[h, o] 𝐍⦃T⦄ → ⦃G, L⦄ ⊢ ➡ 𝐍⦃T⦄. #h #o #G #L #T #H #U #HTU @H /2 width=1 by cpr_cpx/ (**) (* auto fails because a δ-expansion gets in the way *) qed-. (* Basic properties *********************************************************) lemma cnx_sort: ∀h,o,G,L,s. deg h o s 0 → ⦃G, L⦄ ⊢ ➡[h, o] 𝐍⦃⋆s⦄. #h #o #G #L #s #Hk #X #H elim (cpx_inv_sort1 … H) -H // * #d #Hkd #_ lapply (deg_mono … Hkd Hk) -h -L (drop_fwd_length … HL) -HL // qed. lemma cnx_abst: ∀h,o,a,G,L,W,T. ⦃G, L⦄ ⊢ ➡[h, o] 𝐍⦃W⦄ → ⦃G, L.ⓛW⦄ ⊢ ➡[h, o] 𝐍⦃T⦄ → ⦃G, L⦄ ⊢ ➡[h, o] 𝐍⦃ⓛ{a}W.T⦄. #h #o #a #G #L #W #T #HW #HT #X #H elim (cpx_inv_abst1 … H) -H #W0 #T0 #HW0 #HT0 #H destruct >(HW … HW0) -W0 >(HT … HT0) -T0 // qed. lemma cnx_appl_simple: ∀h,o,G,L,V,T. ⦃G, L⦄ ⊢ ➡[h, o] 𝐍⦃V⦄ → ⦃G, L⦄ ⊢ ➡[h, o] 𝐍⦃T⦄ → 𝐒⦃T⦄ → ⦃G, L⦄ ⊢ ➡[h, o] 𝐍⦃ⓐV.T⦄. #h #o #G #L #V #T #HV #HT #HS #X #H elim (cpx_inv_appl1_simple … H) -H // #V0 #T0 #HV0 #HT0 #H destruct >(HV … HV0) -V0 >(HT … HT0) -T0 // qed. axiom cnx_dec: ∀h,o,G,L,T1. ⦃G, L⦄ ⊢ ➡[h, o] 𝐍⦃T1⦄ ∨ ∃∃T2. ⦃G, L⦄ ⊢ T1 ➡[h, o] T2 & (T1 = T2 → ⊥).