(**************************************************************************) (* ___ *) (* ||M|| *) (* ||A|| A project by Andrea Asperti *) (* ||T|| *) (* ||I|| Developers: *) (* ||T|| The HELM team. *) (* ||A|| http://helm.cs.unibo.it *) (* \ / *) (* \ / This file is distributed under the terms of the *) (* v GNU General Public License Version 2 *) (* *) (**************************************************************************) include "basic_2/notation/relations/predreducible_5.ma". include "basic_2/static/sd.ma". include "basic_2/reduction/crr.ma". (* REDUCIBLE TERMS FOR CONTEXT-SENSITIVE EXTENDED REDUCTION *****************) (* activate genv *) (* extended reducible terms *) inductive crx (h) (o) (G:genv): relation2 lenv term ≝ | crx_sort : ∀L,s,d. deg h o s (d+1) → crx h o G L (⋆s) | crx_delta : ∀I,L,K,V,i. ⬇[i] L ≡ K.ⓑ{I}V → crx h o G L (#i) | crx_appl_sn: ∀L,V,T. crx h o G L V → crx h o G L (ⓐV.T) | crx_appl_dx: ∀L,V,T. crx h o G L T → crx h o G L (ⓐV.T) | crx_ri2 : ∀I,L,V,T. ri2 I → crx h o G L (②{I}V.T) | crx_ib2_sn : ∀a,I,L,V,T. ib2 a I → crx h o G L V → crx h o G L (ⓑ{a,I}V.T) | crx_ib2_dx : ∀a,I,L,V,T. ib2 a I → crx h o G (L.ⓑ{I}V) T → crx h o G L (ⓑ{a,I}V.T) | crx_beta : ∀a,L,V,W,T. crx h o G L (ⓐV. ⓛ{a}W.T) | crx_theta : ∀a,L,V,W,T. crx h o G L (ⓐV. ⓓ{a}W.T) . interpretation "reducibility for context-sensitive extended reduction (term)" 'PRedReducible h o G L T = (crx h o G L T). (* Basic properties *********************************************************) lemma crr_crx: ∀h,o,G,L,T. ⦃G, L⦄ ⊢ ➡ 𝐑⦃T⦄ → ⦃G, L⦄ ⊢ ➡[h, o] 𝐑⦃T⦄. #h #o #G #L #T #H elim H -L -T /2 width=4 by crx_delta, crx_appl_sn, crx_appl_dx, crx_ri2, crx_ib2_sn, crx_ib2_dx, crx_beta, crx_theta/ qed. (* Basic inversion lemmas ***************************************************) fact crx_inv_sort_aux: ∀h,o,G,L,T,s. ⦃G, L⦄ ⊢ ➡[h, o] 𝐑⦃T⦄ → T = ⋆s → ∃d. deg h o s (d+1). #h #o #G #L #T #s0 * -L -T [ #L #s #d #Hkd #H destruct /2 width=2 by ex_intro/ | #I #L #K #V #i #HLK #H destruct | #L #V #T #_ #H destruct | #L #V #T #_ #H destruct | #I #L #V #T #_ #H destruct | #a #I #L #V #T #_ #_ #H destruct | #a #I #L #V #T #_ #_ #H destruct | #a #L #V #W #T #H destruct | #a #L #V #W #T #H destruct ] qed-. lemma crx_inv_sort: ∀h,o,G,L,s. ⦃G, L⦄ ⊢ ➡[h, o] 𝐑⦃⋆s⦄ → ∃d. deg h o s (d+1). /2 width=5 by crx_inv_sort_aux/ qed-. fact crx_inv_lref_aux: ∀h,o,G,L,T,i. ⦃G, L⦄ ⊢ ➡[h, o] 𝐑⦃T⦄ → T = #i → ∃∃I,K,V. ⬇[i] L ≡ K.ⓑ{I}V. #h #o #G #L #T #j * -L -T [ #L #s #d #_ #H destruct | #I #L #K #V #i #HLK #H destruct /2 width=4 by ex1_3_intro/ | #L #V #T #_ #H destruct | #L #V #T #_ #H destruct | #I #L #V #T #_ #H destruct | #a #I #L #V #T #_ #_ #H destruct | #a #I #L #V #T #_ #_ #H destruct | #a #L #V #W #T #H destruct | #a #L #V #W #T #H destruct ] qed-. lemma crx_inv_lref: ∀h,o,G,L,i. ⦃G, L⦄ ⊢ ➡[h, o] 𝐑⦃#i⦄ → ∃∃I,K,V. ⬇[i] L ≡ K.ⓑ{I}V. /2 width=6 by crx_inv_lref_aux/ qed-. fact crx_inv_gref_aux: ∀h,o,G,L,T,p. ⦃G, L⦄ ⊢ ➡[h, o] 𝐑⦃T⦄ → T = §p → ⊥. #h #o #G #L #T #q * -L -T [ #L #s #d #_ #H destruct | #I #L #K #V #i #HLK #H destruct | #L #V #T #_ #H destruct | #L #V #T #_ #H destruct | #I #L #V #T #_ #H destruct | #a #I #L #V #T #_ #_ #H destruct | #a #I #L #V #T #_ #_ #H destruct | #a #L #V #W #T #H destruct | #a #L #V #W #T #H destruct ] qed-. lemma crx_inv_gref: ∀h,o,G,L,p. ⦃G, L⦄ ⊢ ➡[h, o] 𝐑⦃§p⦄ → ⊥. /2 width=8 by crx_inv_gref_aux/ qed-. lemma trx_inv_atom: ∀h,o,I,G. ⦃G, ⋆⦄ ⊢ ➡[h, o] 𝐑⦃⓪{I}⦄ → ∃∃s,d. deg h o s (d+1) & I = Sort s. #h #o * #i #G #H [ elim (crx_inv_sort … H) -H /2 width=4 by ex2_2_intro/ | elim (crx_inv_lref … H) -H #I #L #V #H elim (drop_inv_atom1 … H) -H #H destruct | elim (crx_inv_gref … H) ] qed-. fact crx_inv_ib2_aux: ∀h,o,a,I,G,L,W,U,T. ib2 a I → ⦃G, L⦄ ⊢ ➡[h, o] 𝐑⦃T⦄ → T = ⓑ{a,I}W.U → ⦃G, L⦄ ⊢ ➡[h, o] 𝐑⦃W⦄ ∨ ⦃G, L.ⓑ{I}W⦄ ⊢ ➡[h, o] 𝐑⦃U⦄. #h #o #b #J #G #L #W0 #U #T #HI * -L -T [ #L #s #d #_ #H destruct | #I #L #K #V #i #_ #H destruct | #L #V #T #_ #H destruct | #L #V #T #_ #H destruct | #I #L #V #T #H1 #H2 destruct elim H1 -H1 #H destruct elim HI -HI #H destruct | #a #I #L #V #T #_ #HV #H destruct /2 width=1 by or_introl/ | #a #I #L #V #T #_ #HT #H destruct /2 width=1 by or_intror/ | #a #L #V #W #T #H destruct | #a #L #V #W #T #H destruct ] qed-. lemma crx_inv_ib2: ∀h,o,a,I,G,L,W,T. ib2 a I → ⦃G, L⦄ ⊢ ➡[h, o] 𝐑⦃ⓑ{a,I}W.T⦄ → ⦃G, L⦄ ⊢ ➡[h, o] 𝐑⦃W⦄ ∨ ⦃G, L.ⓑ{I}W⦄ ⊢ ➡[h, o] 𝐑⦃T⦄. /2 width=5 by crx_inv_ib2_aux/ qed-. fact crx_inv_appl_aux: ∀h,o,G,L,W,U,T. ⦃G, L⦄ ⊢ ➡[h, o] 𝐑⦃T⦄ → T = ⓐW.U → ∨∨ ⦃G, L⦄ ⊢ ➡[h, o] 𝐑⦃W⦄ | ⦃G, L⦄ ⊢ ➡[h, o] 𝐑⦃U⦄ | (𝐒⦃U⦄ → ⊥). #h #o #G #L #W0 #U #T * -L -T [ #L #s #d #_ #H destruct | #I #L #K #V #i #_ #H destruct | #L #V #T #HV #H destruct /2 width=1 by or3_intro0/ | #L #V #T #HT #H destruct /2 width=1 by or3_intro1/ | #I #L #V #T #H1 #H2 destruct elim H1 -H1 #H destruct | #a #I #L #V #T #_ #_ #H destruct | #a #I #L #V #T #_ #_ #H destruct | #a #L #V #W #T #H destruct @or3_intro2 #H elim (simple_inv_bind … H) | #a #L #V #W #T #H destruct @or3_intro2 #H elim (simple_inv_bind … H) ] qed-. lemma crx_inv_appl: ∀h,o,G,L,V,T. ⦃G, L⦄ ⊢ ➡[h, o] 𝐑⦃ⓐV.T⦄ → ∨∨ ⦃G, L⦄ ⊢ ➡[h, o] 𝐑⦃V⦄ | ⦃G, L⦄ ⊢ ➡[h, o] 𝐑⦃T⦄ | (𝐒⦃T⦄ → ⊥). /2 width=3 by crx_inv_appl_aux/ qed-.