(**************************************************************************) (* ___ *) (* ||M|| *) (* ||A|| A project by Andrea Asperti *) (* ||T|| *) (* ||I|| Developers: *) (* ||T|| The HELM team. *) (* ||A|| http://helm.cs.unibo.it *) (* \ / *) (* \ / This file is distributed under the terms of the *) (* v GNU General Public License Version 2 *) (* *) (**************************************************************************) include "ground_2/notation/functions/append_2.ma". include "ground_2/ynat/ynat_plus.ma". include "basic_2/notation/functions/snbind2_3.ma". include "basic_2/notation/functions/snabbr_2.ma". include "basic_2/notation/functions/snabst_2.ma". include "basic_2/grammar/lenv_length.ma". (* LOCAL ENVIRONMENTS *******************************************************) let rec append L K on K ≝ match K with [ LAtom ⇒ L | LPair K I V ⇒ (append L K). ⓑ{I} V ]. interpretation "append (local environment)" 'Append L1 L2 = (append L1 L2). interpretation "local environment tail binding construction (binary)" 'SnBind2 I T L = (append (LPair LAtom I T) L). interpretation "tail abbreviation (local environment)" 'SnAbbr T L = (append (LPair LAtom Abbr T) L). interpretation "tail abstraction (local environment)" 'SnAbst L T = (append (LPair LAtom Abst T) L). definition d_appendable_sn: predicate (lenv→relation term) ≝ λR. ∀K,T1,T2. R K T1 T2 → ∀L. R (L @@ K) T1 T2. (* Basic properties *********************************************************) lemma append_atom: ∀L. L @@ ⋆ = L. // qed. lemma append_pair: ∀I,L,K,V. L @@ (K.ⓑ{I}V) = (L @@ K).ⓑ{I}V. // qed. lemma append_atom_sn: ∀L. ⋆ @@ L = L. #L elim L -L // #L #I #V >append_pair // qed. lemma append_assoc: associative … append. #L1 #L2 #L3 elim L3 -L3 // qed. lemma append_length: ∀L1,L2. |L1 @@ L2| = |L1| + |L2|. #L1 #L2 elim L2 -L2 // #L2 #I #V2 >append_pair >length_pair >length_pair // qed. lemma ltail_length: ∀I,L,V. |ⓑ{I}V.L| = ⫯|L|. #I #L #V >append_length // qed. (* Basic_1: was just: chead_ctail *) lemma lpair_ltail: ∀L,I,V. ∃∃J,K,W. L.ⓑ{I}V = ⓑ{J}W.K & |L| = |K|. #L elim L -L /2 width=5 by ex2_3_intro/ #L #Z #X #IHL #I #V elim (IHL Z X) -IHL #J #K #W #H #_ >H -H >ltail_length @(ex2_3_intro … J (K.ⓑ{I}V) W) // qed-. (* Basic inversion lemmas ***************************************************) lemma append_inj_sn: ∀K1,K2,L1,L2. L1 @@ K1 = L2 @@ K2 → |K1| = |K2| → L1 = L2 ∧ K1 = K2. #K1 elim K1 -K1 [ * /2 width=1 by conj/ #K2 #I2 #V2 #L1 #L2 #_ >length_atom >length_pair #H elim (ysucc_inv_O_sn … H) | #K1 #I1 #V1 #IH * [ #L1 #L2 #_ >length_atom >length_pair #H elim (ysucc_inv_O_dx … H) | #K2 #I2 #V2 #L1 #L2 #H1 #H2 elim (destruct_lpair_lpair_aux … H1) -H1 #H1 #H3 #H4 destruct (**) (* destruct lemma needed *) elim (IH … H1) -IH -H1 /3 width=1 by ysucc_inv_inj, conj/ ] ] qed-. (* Note: lemma 750 *) lemma append_inj_dx: ∀K1,K2,L1,L2. L1 @@ K1 = L2 @@ K2 → |L1| = |L2| → L1 = L2 ∧ K1 = K2. #K1 elim K1 -K1 [ * /2 width=1 by conj/ #K2 #I2 #V2 #L1 #L2 >append_atom >append_pair #H destruct >length_pair >append_length append_pair >append_atom #H destruct >length_pair >append_length append_pair >append_pair #H1 #H2 elim (destruct_lpair_lpair_aux … H1) -H1 #H1 #H3 #H4 destruct (**) (* destruct lemma needed *) elim (IH … H1) -IH -H1 /2 width=1 by conj/ ] ] qed-. lemma append_inv_refl_dx: ∀L,K. L @@ K = L → K = ⋆. #L #K #H elim (append_inj_dx … (⋆) … H) // qed-. lemma append_inv_pair_dx: ∀I,L,K,V. L @@ K = L.ⓑ{I}V → K = ⋆.ⓑ{I}V. #I #L #K #V #H elim (append_inj_dx … (⋆.ⓑ{I}V) … H) // qed-. lemma length_inv_pos_dx_ltail: ∀L,l. |L| = ⫯l → ∃∃I,K,V. |K| = l & L = ⓑ{I}V.K. #Y #l #H elim (length_inv_pos_dx … H) -H #I #L #V #Hl #HLK destruct elim (lpair_ltail L I V) /2 width=5 by ex2_3_intro/ qed-. lemma length_inv_pos_sn_ltail: ∀L,l. ⫯l = |L| → ∃∃I,K,V. l = |K| & L = ⓑ{I}V.K. #Y #l #H elim (length_inv_pos_sn … H) -H #I #L #V #Hl #HLK destruct elim (lpair_ltail L I V) /2 width=5 by ex2_3_intro/ qed-. (* Basic eliminators ********************************************************) (* Basic_1: was: c_tail_ind *) lemma lenv_ind_alt: ∀R:predicate lenv. R (⋆) → (∀I,L,T. R L → R (ⓑ{I}T.L)) → ∀L. R L. #R #IH1 #IH2 #L @(ynat_f_ind … length … L) -L #x #IHx * // -IH1 #L #I #V #H destruct elim (lpair_ltail L I V) /4 width=1 by monotonic_ylt_plus_sn/ qed-.