(**************************************************************************) (* ___ *) (* ||M|| *) (* ||A|| A project by Andrea Asperti *) (* ||T|| *) (* ||I|| Developers: *) (* ||T|| The HELM team. *) (* ||A|| http://helm.cs.unibo.it *) (* \ / *) (* \ / This file is distributed under the terms of the *) (* v GNU General Public License Version 2 *) (* *) (**************************************************************************) include "basic_2/notation/relations/lazyeq_4.ma". include "basic_2/multiple/llpx_sn.ma". (* LAZY EQUIVALENCE FOR LOCAL ENVIRONMENTS **********************************) definition ceq: relation3 lenv term term ≝ λL,T1,T2. T1 = T2. definition lleq: relation4 ynat term lenv lenv ≝ llpx_sn ceq. interpretation "lazy equivalence (local environment)" 'LazyEq T l L1 L2 = (lleq l T L1 L2). definition lleq_transitive: predicate (relation3 lenv term term) ≝ λR. ∀L2,T1,T2. R L2 T1 T2 → ∀L1. L1 ≡[T1, 0] L2 → R L1 T1 T2. (* Basic inversion lemmas ***************************************************) lemma lleq_ind: ∀R:relation4 ynat term lenv lenv. ( ∀L1,L2,l,s. |L1| = |L2| → R l (⋆s) L1 L2 ) → ( ∀L1,L2,l,i. |L1| = |L2| → yinj i < l → R l (#i) L1 L2 ) → ( ∀I,L1,L2,K1,K2,V,l,i. l ≤ yinj i → ⬇[i] L1 ≡ K1.ⓑ{I}V → ⬇[i] L2 ≡ K2.ⓑ{I}V → K1 ≡[V, yinj O] K2 → R (yinj O) V K1 K2 → R l (#i) L1 L2 ) → ( ∀L1,L2,l,i. |L1| = |L2| → |L1| ≤ i → |L2| ≤ i → R l (#i) L1 L2 ) → ( ∀L1,L2,l,p. |L1| = |L2| → R l (§p) L1 L2 ) → ( ∀a,I,L1,L2,V,T,l. L1 ≡[V, l]L2 → L1.ⓑ{I}V ≡[T, ⫯l] L2.ⓑ{I}V → R l V L1 L2 → R (⫯l) T (L1.ⓑ{I}V) (L2.ⓑ{I}V) → R l (ⓑ{a,I}V.T) L1 L2 ) → ( ∀I,L1,L2,V,T,l. L1 ≡[V, l]L2 → L1 ≡[T, l] L2 → R l V L1 L2 → R l T L1 L2 → R l (ⓕ{I}V.T) L1 L2 ) → ∀l,T,L1,L2. L1 ≡[T, l] L2 → R l T L1 L2. #R #H1 #H2 #H3 #H4 #H5 #H6 #H7 #l #T #L1 #L2 #H elim H -L1 -L2 -T -l /2 width=8 by/ qed-. lemma lleq_inv_bind: ∀a,I,L1,L2,V,T,l. L1 ≡[ⓑ{a,I}V.T, l] L2 → L1 ≡[V, l] L2 ∧ L1.ⓑ{I}V ≡[T, ⫯l] L2.ⓑ{I}V. /2 width=2 by llpx_sn_inv_bind/ qed-. lemma lleq_inv_flat: ∀I,L1,L2,V,T,l. L1 ≡[ⓕ{I}V.T, l] L2 → L1 ≡[V, l] L2 ∧ L1 ≡[T, l] L2. /2 width=2 by llpx_sn_inv_flat/ qed-. (* Basic forward lemmas *****************************************************) lemma lleq_fwd_length: ∀L1,L2,T,l. L1 ≡[T, l] L2 → |L1| = |L2|. /2 width=4 by llpx_sn_fwd_length/ qed-. lemma lleq_fwd_lref: ∀L1,L2,l,i. L1 ≡[#i, l] L2 → ∨∨ |L1| ≤ i ∧ |L2| ≤ i | yinj i < l | ∃∃I,K1,K2,V. ⬇[i] L1 ≡ K1.ⓑ{I}V & ⬇[i] L2 ≡ K2.ⓑ{I}V & K1 ≡[V, yinj 0] K2 & l ≤ yinj i. #L1 #L2 #l #i #H elim (llpx_sn_fwd_lref … H) /2 width=1 by or3_intro0, or3_intro1/ * /3 width=7 by or3_intro2, ex4_4_intro/ qed-. lemma lleq_fwd_drop_sn: ∀L1,L2,T,l. L1 ≡[l, T] L2 → ∀K1,i. ⬇[i] L1 ≡ K1 → ∃K2. ⬇[i] L2 ≡ K2. /2 width=7 by llpx_sn_fwd_drop_sn/ qed-. lemma lleq_fwd_drop_dx: ∀L1,L2,T,l. L1 ≡[l, T] L2 → ∀K2,i. ⬇[i] L2 ≡ K2 → ∃K1. ⬇[i] L1 ≡ K1. /2 width=7 by llpx_sn_fwd_drop_dx/ qed-. lemma lleq_fwd_bind_sn: ∀a,I,L1,L2,V,T,l. L1 ≡[ⓑ{a,I}V.T, l] L2 → L1 ≡[V, l] L2. /2 width=4 by llpx_sn_fwd_bind_sn/ qed-. lemma lleq_fwd_bind_dx: ∀a,I,L1,L2,V,T,l. L1 ≡[ⓑ{a,I}V.T, l] L2 → L1.ⓑ{I}V ≡[T, ⫯l] L2.ⓑ{I}V. /2 width=2 by llpx_sn_fwd_bind_dx/ qed-. lemma lleq_fwd_flat_sn: ∀I,L1,L2,V,T,l. L1 ≡[ⓕ{I}V.T, l] L2 → L1 ≡[V, l] L2. /2 width=3 by llpx_sn_fwd_flat_sn/ qed-. lemma lleq_fwd_flat_dx: ∀I,L1,L2,V,T,l. L1 ≡[ⓕ{I}V.T, l] L2 → L1 ≡[T, l] L2. /2 width=3 by llpx_sn_fwd_flat_dx/ qed-. (* Basic properties *********************************************************) lemma lleq_sort: ∀L1,L2,l,s. |L1| = |L2| → L1 ≡[⋆s, l] L2. /2 width=1 by llpx_sn_sort/ qed. lemma lleq_skip: ∀L1,L2,l,i. yinj i < l → |L1| = |L2| → L1 ≡[#i, l] L2. /2 width=1 by llpx_sn_skip/ qed. lemma lleq_lref: ∀I,L1,L2,K1,K2,V,l,i. l ≤ yinj i → ⬇[i] L1 ≡ K1.ⓑ{I}V → ⬇[i] L2 ≡ K2.ⓑ{I}V → K1 ≡[V, 0] K2 → L1 ≡[#i, l] L2. /2 width=9 by llpx_sn_lref/ qed. lemma lleq_free: ∀L1,L2,l,i. |L1| ≤ i → |L2| ≤ i → |L1| = |L2| → L1 ≡[#i, l] L2. /2 width=1 by llpx_sn_free/ qed. lemma lleq_gref: ∀L1,L2,l,p. |L1| = |L2| → L1 ≡[§p, l] L2. /2 width=1 by llpx_sn_gref/ qed. lemma lleq_bind: ∀a,I,L1,L2,V,T,l. L1 ≡[V, l] L2 → L1.ⓑ{I}V ≡[T, ⫯l] L2.ⓑ{I}V → L1 ≡[ⓑ{a,I}V.T, l] L2. /2 width=1 by llpx_sn_bind/ qed. lemma lleq_flat: ∀I,L1,L2,V,T,l. L1 ≡[V, l] L2 → L1 ≡[T, l] L2 → L1 ≡[ⓕ{I}V.T, l] L2. /2 width=1 by llpx_sn_flat/ qed. lemma lleq_refl: ∀l,T. reflexive … (lleq l T). /2 width=1 by llpx_sn_refl/ qed. lemma lleq_Y: ∀L1,L2,T. |L1| = |L2| → L1 ≡[T, ∞] L2. /2 width=1 by llpx_sn_Y/ qed. lemma lleq_sym: ∀l,T. symmetric … (lleq l T). #l #T #L1 #L2 #H @(lleq_ind … H) -l -T -L1 -L2 /2 width=7 by lleq_sort, lleq_skip, lleq_lref, lleq_free, lleq_gref, lleq_bind, lleq_flat/ qed-. lemma lleq_ge_up: ∀L1,L2,U,lt. L1 ≡[U, lt] L2 → ∀T,l,k. ⬆[l, k] T ≡ U → lt ≤ l + k → L1 ≡[U, l] L2. /2 width=6 by llpx_sn_ge_up/ qed-. lemma lleq_ge: ∀L1,L2,T,l1. L1 ≡[T, l1] L2 → ∀l2. l1 ≤ l2 → L1 ≡[T, l2] L2. /2 width=3 by llpx_sn_ge/ qed-. lemma lleq_bind_O: ∀a,I,L1,L2,V,T. L1 ≡[V, 0] L2 → L1.ⓑ{I}V ≡[T, 0] L2.ⓑ{I}V → L1 ≡[ⓑ{a,I}V.T, 0] L2. /2 width=1 by llpx_sn_bind_O/ qed-. (* Advanceded properties on lazy pointwise extensions ************************) lemma llpx_sn_lrefl: ∀R. (∀L. reflexive … (R L)) → ∀L1,L2,T,l. L1 ≡[T, l] L2 → llpx_sn R l T L1 L2. /2 width=3 by llpx_sn_co/ qed-.