(**************************************************************************) (* ___ *) (* ||M|| *) (* ||A|| A project by Andrea Asperti *) (* ||T|| *) (* ||I|| Developers: *) (* ||T|| The HELM team. *) (* ||A|| http://helm.cs.unibo.it *) (* \ / *) (* \ / This file is distributed under the terms of the *) (* v GNU General Public License Version 2 *) (* *) (**************************************************************************) include "ground_2/ynat/ynat_lt.ma". include "basic_2/notation/relations/midiso_4.ma". include "basic_2/grammar/lenv_length.ma". (* EQUIVALENCE FOR LOCAL ENVIRONMENTS ***************************************) inductive lreq: relation4 ynat ynat lenv lenv ≝ | lreq_atom: ∀l,m. lreq l m (⋆) (⋆) | lreq_zero: ∀I1,I2,L1,L2,V1,V2. lreq 0 0 L1 L2 → lreq 0 0 (L1.ⓑ{I1}V1) (L2.ⓑ{I2}V2) | lreq_pair: ∀I,L1,L2,V,m. lreq 0 m L1 L2 → lreq 0 (⫯m) (L1.ⓑ{I}V) (L2.ⓑ{I}V) | lreq_succ: ∀I1,I2,L1,L2,V1,V2,l,m. lreq l m L1 L2 → lreq (⫯l) m (L1.ⓑ{I1}V1) (L2.ⓑ{I2}V2) . interpretation "equivalence (local environment)" 'MidIso l m L1 L2 = (lreq l m L1 L2). (* Basic properties *********************************************************) lemma lreq_pair_lt: ∀I,L1,L2,V,m. L1 ⩬[0, ⫰m] L2 → 0 < m → L1.ⓑ{I}V ⩬[0, m] L2.ⓑ{I}V. #I #L1 #L2 #V #m #HL12 #Hm <(ylt_inv_O1 … Hm) /2 width=1 by lreq_pair/ qed. lemma lreq_succ_lt: ∀I1,I2,L1,L2,V1,V2,l,m. L1 ⩬[⫰l, m] L2 → 0 < l → L1.ⓑ{I1}V1 ⩬[l, m] L2. ⓑ{I2}V2. #I1 #I2 #L1 #L2 #V1 #V2 #l #m #HL12 #Hl <(ylt_inv_O1 … Hl) /2 width=1 by lreq_succ/ qed. lemma lreq_pair_O_Y: ∀L1,L2. L1 ⩬[0, ∞] L2 → ∀I,V. L1.ⓑ{I}V ⩬[0, ∞] L2.ⓑ{I}V. #L1 #L2 #HL12 #I #V lapply (lreq_pair I … V … HL12) -HL12 // qed. lemma lreq_refl: ∀L,l,m. L ⩬[l, m] L. #L elim L -L // #L #I #V #IHL #l elim (ynat_cases … l) [| * #x ] #Hl destruct /2 width=1 by lreq_succ/ #m elim (ynat_cases … m) [| * #x ] #Hm destruct /2 width=1 by lreq_zero, lreq_pair/ qed. lemma lreq_O2: ∀L1,L2,l. |L1| = |L2| → L1 ⩬[l, 0] L2. #L1 elim L1 -L1 [| #L1 #I1 #V1 #IHL1 ] * // [1,3: #L2 #I2 #V2 ] #l [ #H elim (ysucc_inv_O_sn … H) | >length_pair >length_pair #H lapply (ysucc_inv_inj … H) -H #HL12 elim (ynat_cases l) /3 width=1 by lreq_zero/ * /3 width=1 by lreq_succ/ | #H elim (ysucc_inv_O_dx … H) ] qed. lemma lreq_sym: ∀l,m. symmetric … (lreq l m). #l #m #L1 #L2 #H elim H -L1 -L2 -l -m /2 width=1 by lreq_zero, lreq_pair, lreq_succ/ qed-. (* Basic inversion lemmas ***************************************************) fact lreq_inv_atom1_aux: ∀L1,L2,l,m. L1 ⩬[l, m] L2 → L1 = ⋆ → L2 = ⋆. #L1 #L2 #l #m * -L1 -L2 -l -m // [ #I1 #I2 #L1 #L2 #V1 #V2 #_ #H destruct | #I #L1 #L2 #V #m #_ #H destruct | #I1 #I2 #L1 #L2 #V1 #V2 #l #m #_ #H destruct ] qed-. lemma lreq_inv_atom1: ∀L2,l,m. ⋆ ⩬[l, m] L2 → L2 = ⋆. /2 width=5 by lreq_inv_atom1_aux/ qed-. fact lreq_inv_zero1_aux: ∀L1,L2,l,m. L1 ⩬[l, m] L2 → ∀J1,K1,W1. L1 = K1.ⓑ{J1}W1 → l = 0 → m = 0 → ∃∃J2,K2,W2. K1 ⩬[0, 0] K2 & L2 = K2.ⓑ{J2}W2. #L1 #L2 #l #m * -L1 -L2 -l -m [ #l #m #J1 #K1 #W1 #H destruct | #I1 #I2 #L1 #L2 #V1 #V2 #HL12 #J1 #K1 #W1 #H #_ #_ destruct /2 width=5 by ex2_3_intro/ | #I #L1 #L2 #V #m #_ #J1 #K1 #W1 #_ #_ #H elim (ysucc_inv_O_dx … H) | #I1 #I2 #L1 #L2 #V1 #V2 #l #m #_ #J1 #K1 #W1 #_ #H elim (ysucc_inv_O_dx … H) ] qed-. lemma lreq_inv_zero1: ∀I1,K1,L2,V1. K1.ⓑ{I1}V1 ⩬[0, 0] L2 → ∃∃I2,K2,V2. K1 ⩬[0, 0] K2 & L2 = K2.ⓑ{I2}V2. /2 width=9 by lreq_inv_zero1_aux/ qed-. fact lreq_inv_pair1_aux: ∀L1,L2,l,m. L1 ⩬[l, m] L2 → ∀J,K1,W. L1 = K1.ⓑ{J}W → l = 0 → 0 < m → ∃∃K2. K1 ⩬[0, ⫰m] K2 & L2 = K2.ⓑ{J}W. #L1 #L2 #l #m * -L1 -L2 -l -m [ #l #m #J #K1 #W #H destruct | #I1 #I2 #L1 #L2 #V1 #V2 #_ #J #K1 #W #_ #_ #H elim (ylt_yle_false … H) // | #I #L1 #L2 #V #m #HL12 #J #K1 #W #H #_ #_ destruct /2 width=3 by ex2_intro/ | #I1 #I2 #L1 #L2 #V1 #V2 #l #m #_ #J #K1 #W #_ #H elim (ysucc_inv_O_dx … H) ] qed-. lemma lreq_inv_pair1: ∀I,K1,L2,V,m. K1.ⓑ{I}V ⩬[0, m] L2 → 0 < m → ∃∃K2. K1 ⩬[0, ⫰m] K2 & L2 = K2.ⓑ{I}V. /2 width=6 by lreq_inv_pair1_aux/ qed-. lemma lreq_inv_pair: ∀I1,I2,L1,L2,V1,V2,m. L1.ⓑ{I1}V1 ⩬[0, m] L2.ⓑ{I2}V2 → 0 < m → ∧∧ L1 ⩬[0, ⫰m] L2 & I1 = I2 & V1 = V2. #I1 #I2 #L1 #L2 #V1 #V2 #m #H #Hm elim (lreq_inv_pair1 … H) -H // #Y #HL12 #H destruct /2 width=1 by and3_intro/ qed-. fact lreq_inv_succ1_aux: ∀L1,L2,l,m. L1 ⩬[l, m] L2 → ∀J1,K1,W1. L1 = K1.ⓑ{J1}W1 → 0 < l → ∃∃J2,K2,W2. K1 ⩬[⫰l, m] K2 & L2 = K2.ⓑ{J2}W2. #L1 #L2 #l #m * -L1 -L2 -l -m [ #l #m #J1 #K1 #W1 #H destruct | #I1 #I2 #L1 #L2 #V1 #V2 #_ #J1 #K1 #W1 #_ #H elim (ylt_yle_false … H) // | #I #L1 #L2 #V #m #_ #J1 #K1 #W1 #_ #H elim (ylt_yle_false … H) // | #I1 #I2 #L1 #L2 #V1 #V2 #l #m #HL12 #J1 #K1 #W1 #H #_ destruct /2 width=5 by ex2_3_intro/ ] qed-. lemma lreq_inv_succ1: ∀I1,K1,L2,V1,l,m. K1.ⓑ{I1}V1 ⩬[l, m] L2 → 0 < l → ∃∃I2,K2,V2. K1 ⩬[⫰l, m] K2 & L2 = K2.ⓑ{I2}V2. /2 width=5 by lreq_inv_succ1_aux/ qed-. lemma lreq_inv_atom2: ∀L1,l,m. L1 ⩬[l, m] ⋆ → L1 = ⋆. /3 width=3 by lreq_inv_atom1, lreq_sym/ qed-. lemma lreq_inv_succ: ∀I1,I2,L1,L2,V1,V2,l,m. L1.ⓑ{I1}V1 ⩬[l, m] L2.ⓑ{I2}V2 → 0 < l → L1 ⩬[⫰l, m] L2. #I1 #I2 #L1 #L2 #V1 #V2 #l #m #H #Hl elim (lreq_inv_succ1 … H) -H // #Z #Y #X #HL12 #H destruct // qed-. lemma lreq_inv_zero2: ∀I2,K2,L1,V2. L1 ⩬[0, 0] K2.ⓑ{I2}V2 → ∃∃I1,K1,V1. K1 ⩬[0, 0] K2 & L1 = K1.ⓑ{I1}V1. #I2 #K2 #L1 #V2 #H elim (lreq_inv_zero1 … (lreq_sym … H)) -H /3 width=5 by lreq_sym, ex2_3_intro/ qed-. lemma lreq_inv_pair2: ∀I,K2,L1,V,m. L1 ⩬[0, m] K2.ⓑ{I}V → 0 < m → ∃∃K1. K1 ⩬[0, ⫰m] K2 & L1 = K1.ⓑ{I}V. #I #K2 #L1 #V #m #H #Hm elim (lreq_inv_pair1 … (lreq_sym … H)) -H /3 width=3 by lreq_sym, ex2_intro/ qed-. lemma lreq_inv_succ2: ∀I2,K2,L1,V2,l,m. L1 ⩬[l, m] K2.ⓑ{I2}V2 → 0 < l → ∃∃I1,K1,V1. K1 ⩬[⫰l, m] K2 & L1 = K1.ⓑ{I1}V1. #I2 #K2 #L1 #V2 #l #m #H #Hl elim (lreq_inv_succ1 … (lreq_sym … H)) -H /3 width=5 by lreq_sym, ex2_3_intro/ qed-. (* Basic forward lemmas *****************************************************) lemma lreq_fwd_length: ∀L1,L2,l,m. L1 ⩬[l, m] L2 → |L1| = |L2|. #L1 #L2 #l #m #H elim H -L1 -L2 -l -m // qed-. (* Advanced inversion lemmas ************************************************) fact lreq_inv_O_Y_aux: ∀L1,L2,l,m. L1 ⩬[l, m] L2 → l = 0 → m = ∞ → L1 = L2. #L1 #L2 #l #m #H elim H -L1 -L2 -l -m // [ #I1 #I2 #L1 #L2 #V1 #V2 #_ #_ #_ #H destruct | /4 width=1 by eq_f3, ysucc_inv_Y_dx/ | #I1 #I2 #L1 #L2 #V1 #V2 #l #m #_ #_ #H elim (ysucc_inv_O_dx … H) ] qed-. lemma lreq_inv_O_Y: ∀L1,L2. L1 ⩬[0, ∞] L2 → L1 = L2. /2 width=5 by lreq_inv_O_Y_aux/ qed-.