(**************************************************************************) (* ___ *) (* ||M|| *) (* ||A|| A project by Andrea Asperti *) (* ||T|| *) (* ||I|| Developers: *) (* ||T|| The HELM team. *) (* ||A|| http://helm.cs.unibo.it *) (* \ / *) (* \ / This file is distributed under the terms of the *) (* v GNU General Public License Version 2 *) (* *) (**************************************************************************) include "basic_2/notation/relations/lrsubeqd_5.ma". include "basic_2/static/lsubr.ma". include "basic_2/static/da.ma". (* LOCAL ENVIRONMENT REFINEMENT FOR DEGREE ASSIGNMENT ***********************) inductive lsubd (h) (o) (G): relation lenv ≝ | lsubd_atom: lsubd h o G (⋆) (⋆) | lsubd_pair: ∀I,L1,L2,V. lsubd h o G L1 L2 → lsubd h o G (L1.ⓑ{I}V) (L2.ⓑ{I}V) | lsubd_beta: ∀L1,L2,W,V,d. ⦃G, L1⦄ ⊢ V ▪[h, o] d+1 → ⦃G, L2⦄ ⊢ W ▪[h, o] d → lsubd h o G L1 L2 → lsubd h o G (L1.ⓓⓝW.V) (L2.ⓛW) . interpretation "local environment refinement (degree assignment)" 'LRSubEqD h o G L1 L2 = (lsubd h o G L1 L2). (* Basic forward lemmas *****************************************************) lemma lsubd_fwd_lsubr: ∀h,o,G,L1,L2. G ⊢ L1 ⫃▪[h, o] L2 → L1 ⫃ L2. #h #o #G #L1 #L2 #H elim H -L1 -L2 /2 width=1 by lsubr_pair, lsubr_beta/ qed-. (* Basic inversion lemmas ***************************************************) fact lsubd_inv_atom1_aux: ∀h,o,G,L1,L2. G ⊢ L1 ⫃▪[h, o] L2 → L1 = ⋆ → L2 = ⋆. #h #o #G #L1 #L2 * -L1 -L2 [ // | #I #L1 #L2 #V #_ #H destruct | #L1 #L2 #W #V #d #_ #_ #_ #H destruct ] qed-. lemma lsubd_inv_atom1: ∀h,o,G,L2. G ⊢ ⋆ ⫃▪[h, o] L2 → L2 = ⋆. /2 width=6 by lsubd_inv_atom1_aux/ qed-. fact lsubd_inv_pair1_aux: ∀h,o,G,L1,L2. G ⊢ L1 ⫃▪[h, o] L2 → ∀I,K1,X. L1 = K1.ⓑ{I}X → (∃∃K2. G ⊢ K1 ⫃▪[h, o] K2 & L2 = K2.ⓑ{I}X) ∨ ∃∃K2,W,V,d. ⦃G, K1⦄ ⊢ V ▪[h, o] d+1 & ⦃G, K2⦄ ⊢ W ▪[h, o] d & G ⊢ K1 ⫃▪[h, o] K2 & I = Abbr & L2 = K2.ⓛW & X = ⓝW.V. #h #o #G #L1 #L2 * -L1 -L2 [ #J #K1 #X #H destruct | #I #L1 #L2 #V #HL12 #J #K1 #X #H destruct /3 width=3 by ex2_intro, or_introl/ | #L1 #L2 #W #V #d #HV #HW #HL12 #J #K1 #X #H destruct /3 width=9 by ex6_4_intro, or_intror/ ] qed-. lemma lsubd_inv_pair1: ∀h,o,I,G,K1,L2,X. G ⊢ K1.ⓑ{I}X ⫃▪[h, o] L2 → (∃∃K2. G ⊢ K1 ⫃▪[h, o] K2 & L2 = K2.ⓑ{I}X) ∨ ∃∃K2,W,V,d. ⦃G, K1⦄ ⊢ V ▪[h, o] d+1 & ⦃G, K2⦄ ⊢ W ▪[h, o] d & G ⊢ K1 ⫃▪[h, o] K2 & I = Abbr & L2 = K2.ⓛW & X = ⓝW.V. /2 width=3 by lsubd_inv_pair1_aux/ qed-. fact lsubd_inv_atom2_aux: ∀h,o,G,L1,L2. G ⊢ L1 ⫃▪[h, o] L2 → L2 = ⋆ → L1 = ⋆. #h #o #G #L1 #L2 * -L1 -L2 [ // | #I #L1 #L2 #V #_ #H destruct | #L1 #L2 #W #V #d #_ #_ #_ #H destruct ] qed-. lemma lsubd_inv_atom2: ∀h,o,G,L1. G ⊢ L1 ⫃▪[h, o] ⋆ → L1 = ⋆. /2 width=6 by lsubd_inv_atom2_aux/ qed-. fact lsubd_inv_pair2_aux: ∀h,o,G,L1,L2. G ⊢ L1 ⫃▪[h, o] L2 → ∀I,K2,W. L2 = K2.ⓑ{I}W → (∃∃K1. G ⊢ K1 ⫃▪[h, o] K2 & L1 = K1.ⓑ{I}W) ∨ ∃∃K1,V,d. ⦃G, K1⦄ ⊢ V ▪[h, o] d+1 & ⦃G, K2⦄ ⊢ W ▪[h, o] d & G ⊢ K1 ⫃▪[h, o] K2 & I = Abst & L1 = K1. ⓓⓝW.V. #h #o #G #L1 #L2 * -L1 -L2 [ #J #K2 #U #H destruct | #I #L1 #L2 #V #HL12 #J #K2 #U #H destruct /3 width=3 by ex2_intro, or_introl/ | #L1 #L2 #W #V #d #HV #HW #HL12 #J #K2 #U #H destruct /3 width=7 by ex5_3_intro, or_intror/ ] qed-. lemma lsubd_inv_pair2: ∀h,o,I,G,L1,K2,W. G ⊢ L1 ⫃▪[h, o] K2.ⓑ{I}W → (∃∃K1. G ⊢ K1 ⫃▪[h, o] K2 & L1 = K1.ⓑ{I}W) ∨ ∃∃K1,V,d. ⦃G, K1⦄ ⊢ V ▪[h, o] d+1 & ⦃G, K2⦄ ⊢ W ▪[h, o] d & G ⊢ K1 ⫃▪[h, o] K2 & I = Abst & L1 = K1. ⓓⓝW.V. /2 width=3 by lsubd_inv_pair2_aux/ qed-. (* Basic properties *********************************************************) lemma lsubd_refl: ∀h,o,G,L. G ⊢ L ⫃▪[h, o] L. #h #o #G #L elim L -L /2 width=1 by lsubd_pair/ qed. (* Note: the constant 0 cannot be generalized *) lemma lsubd_drop_O1_conf: ∀h,o,G,L1,L2. G ⊢ L1 ⫃▪[h, o] L2 → ∀K1,c,k. ⬇[c, 0, k] L1 ≡ K1 → ∃∃K2. G ⊢ K1 ⫃▪[h, o] K2 & ⬇[c, 0, k] L2 ≡ K2. #h #o #G #L1 #L2 #H elim H -L1 -L2 [ /2 width=3 by ex2_intro/ | #I #L1 #L2 #V #_ #IHL12 #K1 #c #k #H elim (drop_inv_O1_pair1 … H) -H * #Hm #HLK1 [ destruct elim (IHL12 L1 c 0) -IHL12 // #X #HL12 #H <(drop_inv_O2 … H) in HL12; -H /3 width=3 by lsubd_pair, drop_pair, ex2_intro/ | elim (IHL12 … HLK1) -L1 /3 width=3 by drop_drop_lt, ex2_intro/ ] | #L1 #L2 #W #V #d #HV #HW #_ #IHL12 #K1 #c #k #H elim (drop_inv_O1_pair1 … H) -H * #Hm #HLK1 [ destruct elim (IHL12 L1 c 0) -IHL12 // #X #HL12 #H <(drop_inv_O2 … H) in HL12; -H /3 width=3 by lsubd_beta, drop_pair, ex2_intro/ | elim (IHL12 … HLK1) -L1 /3 width=3 by drop_drop_lt, ex2_intro/ ] ] qed-. (* Note: the constant 0 cannot be generalized *) lemma lsubd_drop_O1_trans: ∀h,o,G,L1,L2. G ⊢ L1 ⫃▪[h, o] L2 → ∀K2,c,k. ⬇[c, 0, k] L2 ≡ K2 → ∃∃K1. G ⊢ K1 ⫃▪[h, o] K2 & ⬇[c, 0, k] L1 ≡ K1. #h #o #G #L1 #L2 #H elim H -L1 -L2 [ /2 width=3 by ex2_intro/ | #I #L1 #L2 #V #_ #IHL12 #K2 #c #k #H elim (drop_inv_O1_pair1 … H) -H * #Hm #HLK2 [ destruct elim (IHL12 L2 c 0) -IHL12 // #X #HL12 #H <(drop_inv_O2 … H) in HL12; -H /3 width=3 by lsubd_pair, drop_pair, ex2_intro/ | elim (IHL12 … HLK2) -L2 /3 width=3 by drop_drop_lt, ex2_intro/ ] | #L1 #L2 #W #V #d #HV #HW #_ #IHL12 #K2 #c #k #H elim (drop_inv_O1_pair1 … H) -H * #Hm #HLK2 [ destruct elim (IHL12 L2 c 0) -IHL12 // #X #HL12 #H <(drop_inv_O2 … H) in HL12; -H /3 width=3 by lsubd_beta, drop_pair, ex2_intro/ | elim (IHL12 … HLK2) -L2 /3 width=3 by drop_drop_lt, ex2_intro/ ] ] qed-.