(**************************************************************************)
(* ___ *)
(* ||M|| *)
(* ||A|| A project by Andrea Asperti *)
(* ||T|| *)
(* ||I|| Developers: *)
(* ||T|| The HELM team. *)
(* ||A|| http://helm.cs.unibo.it *)
(* \ / *)
(* \ / This file is distributed under the terms of the *)
(* v GNU General Public License Version 2 *)
(* *)
(**************************************************************************)
(* This file was automatically generated: do not edit *********************)
include "CoRN.ma".
(* $Id: RealPowers.v,v 1.5 2004/04/23 10:01:08 lcf Exp $ *)
(*#* printing [!] %\ensuremath{\hat{\ }}% #^# *)
(*#* printing {!} %\ensuremath{\hat{\ }}% #^# *)
include "transc/Exponential.ma".
(* UNEXPORTED
Opaque Expon.
*)
(*#* *Arbitrary Real Powers
**Powers of Real Numbers
We now define
$x^y=e^{y\times\log(x)}$#xy=ey*log(x)#, whenever
[x [>] 0], inspired by the rules for manipulating these expressions.
*)
inline procedural "cic:/CoRN/transc/RealPowers/power.con" as definition.
(* NOTATION
Notation "x [!] y [//] Hy" := (power x y Hy) (at level 20).
*)
(*#*
This definition yields a well defined, strongly extensional function
which extends the algebraic exponentiation to an integer power and
still has all the good properties of that operation; when [x [=] e] it
coincides with the exponential function.
*)
inline procedural "cic:/CoRN/transc/RealPowers/power_wd.con" as lemma.
inline procedural "cic:/CoRN/transc/RealPowers/power_strext.con" as lemma.
inline procedural "cic:/CoRN/transc/RealPowers/power_plus.con" as lemma.
inline procedural "cic:/CoRN/transc/RealPowers/power_inv.con" as lemma.
(* UNEXPORTED
Hint Resolve power_wd power_plus power_inv: algebra.
*)
inline procedural "cic:/CoRN/transc/RealPowers/power_minus.con" as lemma.
inline procedural "cic:/CoRN/transc/RealPowers/power_nat.con" as lemma.
(* UNEXPORTED
Hint Resolve power_minus power_nat: algebra.
*)
inline procedural "cic:/CoRN/transc/RealPowers/power_zero.con" as lemma.
inline procedural "cic:/CoRN/transc/RealPowers/power_one.con" as lemma.
(* UNEXPORTED
Hint Resolve power_zero power_one: algebra.
*)
(* UNEXPORTED
Opaque nexp_op.
*)
inline procedural "cic:/CoRN/transc/RealPowers/power_int.con" as lemma.
(* UNEXPORTED
Hint Resolve power_int: algebra.
*)
inline procedural "cic:/CoRN/transc/RealPowers/Exp_power.con" as lemma.
inline procedural "cic:/CoRN/transc/RealPowers/mult_power.con" as lemma.
inline procedural "cic:/CoRN/transc/RealPowers/recip_power.con" as lemma.
(* UNEXPORTED
Hint Resolve Exp_power mult_power recip_power: algebra.
*)
inline procedural "cic:/CoRN/transc/RealPowers/div_power.con" as lemma.
(* UNEXPORTED
Hint Resolve div_power: algebra.
*)
inline procedural "cic:/CoRN/transc/RealPowers/power_ap_zero.con" as lemma.
inline procedural "cic:/CoRN/transc/RealPowers/power_mult.con" as lemma.
inline procedural "cic:/CoRN/transc/RealPowers/power_pos.con" as lemma.
(* UNEXPORTED
Hint Resolve power_mult: algebra.
*)
inline procedural "cic:/CoRN/transc/RealPowers/power_recip.con" as lemma.
(* UNEXPORTED
Hint Resolve power_recip: algebra.
*)
inline procedural "cic:/CoRN/transc/RealPowers/power_div.con" as lemma.
(* UNEXPORTED
Hint Resolve power_div: algebra.
*)
(* UNEXPORTED
Section Power_Function
*)
(*#* **Power Function
This operation on real numbers gives birth to an analogous operation
on partial functions which preserves continuity.
%\begin{convention}% Let [F, G : PartIR].
%\end{convention}%
*)
(* UNEXPORTED
cic:/CoRN/transc/RealPowers/Power_Function/J.var
*)
(* UNEXPORTED
cic:/CoRN/transc/RealPowers/Power_Function/F.var
*)
(* UNEXPORTED
cic:/CoRN/transc/RealPowers/Power_Function/G.var
*)
inline procedural "cic:/CoRN/transc/RealPowers/FPower.con" as definition.
inline procedural "cic:/CoRN/transc/RealPowers/FPower_domain.con" as lemma.
inline procedural "cic:/CoRN/transc/RealPowers/Continuous_power.con" as lemma.
(* UNEXPORTED
End Power_Function
*)
(* NOTATION
Notation "F {!} G" := (FPower F G) (at level 20).
*)
(* UNEXPORTED
Section More_on_Power_Function
*)
(* UNEXPORTED
Opaque Expon Logarithm.
*)
(*#* From global continuity we can obviously get local continuity: *)
inline procedural "cic:/CoRN/transc/RealPowers/continuous_I_power.con" as lemma.
(*#* The rule for differentiation is a must. *)
(* UNEXPORTED
Transparent Logarithm.
*)
(* UNEXPORTED
Opaque Logarithm.
*)
inline procedural "cic:/CoRN/transc/RealPowers/Derivative_power.con" as lemma.
inline procedural "cic:/CoRN/transc/RealPowers/Diffble_power.con" as lemma.
(* UNEXPORTED
End More_on_Power_Function
*)
(* UNEXPORTED
Hint Resolve Derivative_power: derivate.
*)