(* Copyright (C) 2004, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://helm.cs.unibo.it/ *) (* $Id$ *) open Printf open DisambiguateTypes module Ast = NotationPt (* the integer is an offset to be added to each location *) exception Ambiguous_input (* the integer is an offset to be added to each location *) exception NoWellTypedInterpretation of int * ((Stdpp.location list * string * string) list * (DisambiguateTypes.domain_item * string) list * (Stdpp.location * string) Lazy.t * bool) list exception PathNotWellFormed (** raised when an environment is not enough informative to decide *) exception Try_again of string Lazy.t type ('alias,'term) aliases = bool * 'term DisambiguateTypes.codomain_item DisambiguateTypes.Environment.t type 'a disambiguator_input = string * int * 'a type domain = domain_tree list and domain_tree = Node of Stdpp.location list * domain_item * domain let mono_uris_callback ~selection_mode ?ok ?(enable_button_for_non_vars = true) ~title ~msg ~id = if Helm_registry.get_opt_default Helm_registry.get_bool ~default:true "matita.auto_disambiguation" then function l -> l else raise Ambiguous_input let mono_interp_callback _ _ _ = raise Ambiguous_input let _choose_uris_callback = ref mono_uris_callback let _choose_interp_callback = ref mono_interp_callback let set_choose_uris_callback f = _choose_uris_callback := f let set_choose_interp_callback f = _choose_interp_callback := f let interactive_user_uri_choice = !_choose_uris_callback let interactive_interpretation_choice interp = !_choose_interp_callback interp let input_or_locate_uri ~(title:string) ?id () = None (* Zack: I try to avoid using this callback. I therefore assume that * the presence of an identifier that can't be resolved via "locate" * query is a syntax error *) let rec string_of_domain = function [] -> "" | Node (_,domain_item,l)::tl -> DisambiguateTypes.string_of_domain_item domain_item ^ " [ " ^ string_of_domain l ^ " ] " ^ string_of_domain tl let rec filter_map_domain f = function [] -> [] | Node (locs,domain_item,l)::tl -> match f locs domain_item with None -> filter_map_domain f l @ filter_map_domain f tl | Some res -> res :: filter_map_domain f l @ filter_map_domain f tl let rec map_domain f = function [] -> [] | Node (locs,domain_item,l)::tl -> f locs domain_item :: map_domain f l @ map_domain f tl let uniq_domain dom = let rec aux seen = function [] -> seen,[] | Node (locs,domain_item,l)::tl -> if List.mem domain_item seen then let seen,l = aux seen l in let seen,tl = aux seen tl in seen, l @ tl else let seen,l = aux (domain_item::seen) l in let seen,tl = aux seen tl in seen, Node (locs,domain_item,l)::tl in snd (aux [] dom) let debug = false let debug_print s = if debug then prerr_endline (Lazy.force s) else () (* (** print benchmark information *) let benchmark = true let max_refinements = ref 0 (* benchmarking is not thread safe *) let actual_refinements = ref 0 let domain_size = ref 0 let choices_avg = ref 0. *) type ('term,'metasenv,'subst,'graph) test_result = | Ok of 'term * 'metasenv * 'subst * 'graph | Ko of (Stdpp.location * string) Lazy.t | Uncertain of (Stdpp.location * string) Lazy.t let resolve ~env ~mk_choice (item: domain_item) arg = try match snd (mk_choice (Environment.find item env)), arg with `Num_interp f, `Num_arg n -> f n | `Sym_interp f, `Args l -> f l | `Sym_interp f, `Num_arg n -> (* Implicit number! *) f [] | _,_ -> assert false with Not_found -> failwith ("Domain item not found: " ^ (DisambiguateTypes.string_of_domain_item item)) (* TODO move it to Cic *) let find_in_context name context = let rec aux acc = function | [] -> raise Not_found | Some hd :: tl when hd = name -> acc | _ :: tl -> aux (acc + 1) tl in aux 1 context let string_of_name = function | Ast.Ident (n, _) -> Some n | _ -> assert false ;; let rec domain_of_term ?(loc = HExtlib.dummy_floc) ~context = function | Ast.AttributedTerm (`Loc loc, term) -> domain_of_term ~loc ~context term | Ast.AttributedTerm (_, term) -> domain_of_term ~loc ~context term | Ast.Symbol (name, attr) -> [ Node ([loc], Symbol (name,attr), []) ] (* to be kept in sync with Ast.Appl (Ast.Symbol ...) *) | Ast.Appl (Ast.Symbol (name, attr) as hd :: args) | Ast.Appl (Ast.AttributedTerm (_,Ast.Symbol (name,attr)) as hd :: args) -> let args_dom = List.fold_right (fun term acc -> domain_of_term ~loc ~context term @ acc) args [] in let loc = match hd with Ast.AttributedTerm (`Loc loc,_) -> loc | _ -> loc in [ Node ([loc], Symbol (name,attr), args_dom) ] | Ast.Appl (Ast.Ident (id,uri) as hd :: args) | Ast.Appl (Ast.AttributedTerm (_,Ast.Ident (id,uri)) as hd :: args) -> let uri = match uri with | `Uri u -> Some u | _ -> None in let args_dom = List.fold_right (fun term acc -> domain_of_term ~loc ~context term @ acc) args [] in let loc = match hd with Ast.AttributedTerm (`Loc loc,_) -> loc | _ -> loc in (try (* the next line can raise Not_found *) ignore(find_in_context id context); args_dom with Not_found -> [ Node ([loc], Id (id,uri), args_dom) ] ) | Ast.Appl terms -> List.fold_right (fun term acc -> domain_of_term ~loc ~context term @ acc) terms [] | Ast.Binder (kind, (var, typ), body) -> let type_dom = domain_of_term_option ~loc ~context typ in let body_dom = domain_of_term ~loc ~context:(string_of_name var :: context) body in (match kind with | `Exists -> [ Node ([loc], Symbol ("exists",None), (type_dom @ body_dom)) ] | _ -> type_dom @ body_dom) | Ast.Case (term, indty_ident, outtype, branches) -> let term_dom = domain_of_term ~loc ~context term in let outtype_dom = domain_of_term_option ~loc ~context outtype in let rec get_first_constructor = function | [] -> [] | (Ast.Pattern (head, Some r, _), _) :: _ -> [ Node ([loc], Id (head,Some (NReference.string_of_reference r)), []) ] | (Ast.Pattern (head, None, _), _) :: _ -> [ Node ([loc], Id (head,None), []) ] | _ :: tl -> get_first_constructor tl in let do_branch = function Ast.Pattern (head, _, args), term -> let (term_context, args_domain) = List.fold_left (fun (cont, dom) (name, typ) -> (string_of_name name :: cont, (match typ with | None -> dom | Some typ -> dom @ domain_of_term ~loc ~context:cont typ))) (context, []) args in domain_of_term ~loc ~context:term_context term @ args_domain | Ast.Wildcard, term -> domain_of_term ~loc ~context term in let branches_dom = List.fold_left (fun dom branch -> dom @ do_branch branch) [] branches in (match indty_ident with | None -> get_first_constructor branches | Some (ident, None) -> [ Node ([loc], Id (ident,None) , []) ] | Some (ident, Some r) -> [ Node ([loc], Id (ident,Some (NReference.string_of_reference r)), []) ]) @ term_dom @ outtype_dom @ branches_dom | Ast.Cast (term, ty) -> let term_dom = domain_of_term ~loc ~context term in let ty_dom = domain_of_term ~loc ~context ty in term_dom @ ty_dom | Ast.LetIn ((var, typ), body, where) -> let body_dom = domain_of_term ~loc ~context body in let type_dom = domain_of_term_option ~loc ~context typ in let where_dom = domain_of_term ~loc ~context:(string_of_name var :: context) where in body_dom @ type_dom @ where_dom | Ast.LetRec (kind, defs, where) -> let add_defs context = List.fold_left (fun acc (_, (var, _), _, _) -> string_of_name var :: acc ) context defs in let where_dom = domain_of_term ~loc ~context:(add_defs context) where in let defs_dom = List.fold_left (fun dom (params, (_, typ), body, _) -> let context' = add_defs (List.fold_left (fun acc (var,_) -> string_of_name var :: acc) context params) in List.rev (snd (List.fold_left (fun (context,res) (var,ty) -> string_of_name var :: context, domain_of_term_option ~loc ~context ty @ res) (add_defs context,[]) params)) @ dom @ domain_of_term_option ~loc ~context:context' typ @ domain_of_term ~loc ~context:context' body ) [] defs in defs_dom @ where_dom | Ast.Ident (name, x) -> let x = match x with | `Uri u -> Some u | _ -> None in (try (* the next line can raise Not_found *) ignore(find_in_context name context); [] with Not_found -> (* (match subst with | None -> [ Node ([loc], Id name, []) ] | Some subst -> let terms = List.fold_left (fun dom (_, term) -> let dom' = domain_of_term ~loc ~context term in dom @ dom') [] subst in [ Node ([loc], Id name, terms) ]))*) [ Node ([loc], Id (name,x), []) ]) | Ast.NRef _ -> [] | Ast.NCic _ -> [] | Ast.Implicit _ -> [] | Ast.Num (num, i) -> [ Node ([loc], Num i, []) ] | Ast.Meta (index, local_context) -> List.fold_left (fun dom term -> dom @ domain_of_term_option ~loc ~context term) [] local_context | Ast.Sort _ -> [] | Ast.UserInput | Ast.Literal _ | Ast.Layout _ | Ast.Magic _ | Ast.Variable _ -> assert false and domain_of_term_option ~loc ~context = function | None -> [] | Some t -> domain_of_term ~loc ~context t let domain_of_term ~context term = uniq_domain (domain_of_term ~context term) let domain_of_obj ~context ast = assert (context = []); match ast with | Ast.Theorem (_,_,ty,bo,_) -> domain_of_term [] ty @ (match bo with None -> [] | Some bo -> domain_of_term [] bo) | Ast.Inductive (params,tyl) -> let context, dom = List.fold_left (fun (context, dom) (var, ty) -> let context' = string_of_name var :: context in match ty with None -> context', dom | Some ty -> context', dom @ domain_of_term context ty ) ([], []) params in let context_w_types = List.rev_map (fun (var, _, _, _) -> Some var) tyl @ context in dom @ List.flatten ( List.map (fun (_,_,ty,cl) -> domain_of_term context ty @ List.flatten ( List.map (fun (_,ty) -> domain_of_term context_w_types ty) cl)) tyl) | Ast.Record (params,var,ty,fields) -> let context, dom = List.fold_left (fun (context, dom) (var, ty) -> let context' = string_of_name var :: context in match ty with None -> context', dom | Some ty -> context', dom @ domain_of_term context ty ) ([], []) params in let context_w_types = Some var :: context in dom @ domain_of_term context ty @ snd (List.fold_left (fun (context,res) (name,ty,_,_) -> Some name::context, res @ domain_of_term context ty ) (context_w_types,[]) fields) let domain_of_obj ~context obj = uniq_domain (domain_of_obj ~context obj) (* dom1 \ dom2 *) let domain_diff dom1 dom2 = (* let domain_diff = Domain.diff *) let is_in_dom2 elt = List.exists (function | Symbol (symb,None) -> (match elt with Symbol (symb',_) when symb = symb' -> true | _ -> false) | Num _ -> (match elt with Num _ -> true | _ -> false) | item -> elt = item ) dom2 in let rec aux = function [] -> [] | Node (_,elt,l)::tl when is_in_dom2 elt -> aux (l @ tl) | Node (loc,elt,l)::tl -> Node (loc,elt,aux l)::(aux tl) in aux dom1 let refine_profiler = HExtlib.profile "disambiguate_thing.refine_thing" (* generic function lifting splitting from type T to type (T list) *) let rec list_split item_split ctx pre post = match post with | [] -> [] | x :: post' -> (item_split (fun v1 -> ctx (pre@v1::post')) x)@ list_split item_split ctx (pre@[x]) post' ;; (* splits a 'term capture_variable *) let var_split ctx = function | (_,None) -> [] | (v,Some ty) -> [(fun x -> ctx (v,Some x)),ty] ;; let ity_split ctx (n,isind,ty,cl) = [(fun x -> ctx (n,isind,x,cl)),ty]@ list_split (fun ctx0 (v,ty) -> [(fun x -> ctx0 (v,x)),ty]) (fun x -> ctx (n,isind,ty,x)) [] cl ;; let field_split ctx (n,ty,b,m) = [(fun x -> ctx (n,x,b,m)),ty] ;; (* splits a defn. in a mutual LetRec block *) let letrecaux_split ctx (args,f,bo,n) = list_split var_split (fun x -> ctx (x,f,bo,n)) [] args@ var_split (fun x -> ctx (args,x,bo,n)) f@ [(fun x -> ctx (args,f,x,n)),bo] ;; (* splits a pattern (for case analysis) *) let pattern_split ctx = function | Ast.Wildcard -> [] | Ast.Pattern (s,href,pl) -> let rec auxpatt pre = function | [] -> [] | (x,Some y as x')::post' -> ((fun v -> ctx (Ast.Pattern (s,href,pre@(x,Some v)::post'))),y) ::auxpatt (pre@[x']) post' | (x,None as x')::post' -> auxpatt (pre@[x']) post' in auxpatt [] pl ;; (* this function is used to get the children of a given node, together with * their context * contexts are expressed in the form of functions Ast -> Ast *) (* split : ('term -> 'a) -> 'term -> (('term -> 'a) * 'term) list *) let rec split ctx = function | Ast.AttributedTerm (attr,t) -> [(fun x -> ctx (Ast.AttributedTerm(attr,x))),t] | Ast.Appl tl -> list_split split (fun x -> ctx (Ast.Appl x)) [] tl | Ast.Binder (k,((n,None) as n'),body) -> [ (fun v -> ctx (Ast.Binder (k,n',v))),body] | Ast.Binder (k,((n,Some ty) as n'),body) -> [(fun v -> ctx (Ast.Binder (k,(n,Some v),body))), ty ;(fun v -> ctx (Ast.Binder (k,n',v))),body] | Ast.Case (t,ity,outty,pl) -> let outty_split = match outty with | None -> [] | Some u -> [(fun x -> ctx (Ast.Case (t,ity,Some x,pl))),u] in ((fun x -> ctx (Ast.Case (x,ity,outty,pl))),t):: outty_split@list_split (fun ctx0 (p,x) -> ((fun y -> ctx0 (p,y)),x)::pattern_split (fun y -> ctx0 (y,x)) p) (fun x -> ctx (Ast.Case(t,ity,outty,x))) [] pl | Ast.Cast (u,v) -> [ (fun x -> ctx (Ast.Cast (x,v))),u ; (fun x -> ctx (Ast.Cast (u,x))),v ] | Ast.LetIn ((n,None) as n',u,v) -> [ (fun x -> ctx (Ast.LetIn (n',x,v))), u ; (fun x -> ctx (Ast.LetIn (n',u,x))), v ] | Ast.LetIn ((n,Some t) as n',u,v) -> [ (fun x -> ctx (Ast.LetIn ((n,Some x),u,v))), t ; (fun x -> ctx (Ast.LetIn (n',x,v))), u ; (fun x -> ctx (Ast.LetIn (n',u,x))), v ] | Ast.LetRec (k,funs,where) -> (* we do not use where any more?? *) list_split letrecaux_split (fun x -> ctx (Ast.LetRec(k,x,where))) [] funs | _ -> [] (* leaves *) ;; (* top_split : 'a -> ((term -> 'a) * term) list * returns all the possible top-level (ctx,t) for its input *) let bfvisit ~pp_term top_split test t = let rec aux = function | [] -> None | (ctx0,t0 as hd)::tl -> (* prerr_endline ("ok! length tl = " ^ string_of_int (List.length tl)); *) prerr_endline ("t0 = " ^ pp_term t0); if test t0 then (prerr_endline "caso 1"; Some hd) else let t0' = split ctx0 t0 in (prerr_endline ("caso 2: length t0' = " ^ string_of_int (List.length t0')); aux (tl@t0' (*split ctx0 t0*))) (* in aux [(fun x -> x),t] *) in aux (top_split t) ;; let obj_split (o:Ast.term Ast.obj) = match o with | Ast.Inductive (ls,itl) -> list_split var_split (fun x -> Ast.Inductive (x,itl)) [] ls@ list_split ity_split (fun x -> Ast.Inductive (ls,x)) [] itl | Ast.Theorem (flav,n,ty,None,p) -> [(fun x -> Ast.Theorem (flav,n,x,None,p)), ty] | Ast.Theorem (flav,n,ty,(Some bo as bo'),p) -> [(fun x -> Ast.Theorem (flav,n,x,bo',p)), ty ;(fun x -> Ast.Theorem (flav,n,ty,Some x,p)), bo] | Ast.Record (ls,n,ty,fl) -> list_split var_split (fun x -> Ast.Record (x,n,ty,fl)) [] ls@ [(fun x -> Ast.Record (ls,n,x,fl)),ty]@ list_split field_split (fun x -> Ast.Record (ls,n,ty,x)) [] fl ;; let bfvisit_obj = bfvisit obj_split;; let bfvisit = bfvisit (fun t -> [(fun x -> x),t]) ;; (*let rec initialize_ast (* ~aliases *) ~universe ~lookup_in_library t = let mk_alias = function | Ast.Ident (id,_) -> DisambiguateTypes.Id (id,None) | Ast.Symbol (sym,_) -> DisambiguateTypes.Symbol (sym,None) | Ast.Num _ -> DisambiguateTypes.Num None | _ -> assert false in let lookup_choices = fun item -> (*match universe with | None -> lookup_in_library interactive_user_uri_choice input_or_locate_uri item | Some e -> (try Environment.find item e with Not_found -> []) *) (try Environment.find item universe with Not_found -> []) in match t with | Ast.Ident (_,None) | Ast.Num (_,None) | Ast.Symbol (_,None) -> let choices = lookup_choices (mk_alias t) in if List.length choices <> 1 then t else List.hd choices (* but we lose info on closedness *) | t -> Ast.map (initialize_ast ~universe ~lookup_in_library) t ;; *) let domain_item_of_ast = function | Ast.Ident (id,_) -> DisambiguateTypes.Id (id,None) | Ast.Symbol (sym,_) -> DisambiguateTypes.Symbol (sym,None) | Ast.Num (n,_) -> DisambiguateTypes.Num None | Ast.Case(_,Some (ityname,_),_,_) -> DisambiguateTypes.Id (ityname,None) | _ -> assert false ;; let ast_of_alias_spec t alias = match (t,alias) with | Ast.Ident _, GrafiteAst.Ident_alias (id,uri) -> Ast.Ident(id,`Uri uri) | Ast.Case (t,_,oty,pl), GrafiteAst.Ident_alias (id,uri) -> Ast.Case (t,Some (id,Some (NReference.reference_of_string uri)),oty,pl) | _, GrafiteAst.Symbol_alias (sym,uri,desc) -> Ast.Symbol (sym,Some (uri,desc)) | Ast.Num(m,_), GrafiteAst.Number_alias (uri,desc) -> Ast.Num(m,Some (uri,desc)) | _ -> assert false ;; let test_interpr ~context ~metasenv ~subst ~use_coercions ~expty ~env ~uri ~interpretate_thing ~refine_thing ~ugraph ~mk_localization_tbl t = try let localization_tbl = mk_localization_tbl 503 in let cic_thing = interpretate_thing ~context ~env ~uri ~is_path:false t ~localization_tbl in let foo () = refine_thing metasenv subst context uri ~use_coercions cic_thing expty ugraph ~localization_tbl in match (refine_profiler.HExtlib.profile foo ()) with | Ko _ -> false | _ -> true with (*| Try_again msg -> Uncertain (lazy (Stdpp.dummy_loc,Lazy.force msg)) | Invalid_choice loc_msg -> Ko loc_msg*) | Invalid_choice _ -> false | _ -> true ;; let rec disambiguate_list ~context ~metasenv ~subst ~use_coercions ~expty ~env ~uri ~interpretate_thing ~refine_thing ~ugraph ~visit ~universe ~mk_localization_tbl ~pp_thing ~pp_term ts = let disambiguate_list = disambiguate_list ~context ~metasenv ~subst ~use_coercions ~expty ~env ~uri ~interpretate_thing ~refine_thing ~ugraph ~visit ~universe ~mk_localization_tbl ~pp_thing ~pp_term in let test_interpr = test_interpr ~context ~metasenv ~subst ~use_coercions ~expty ~env ~uri ~interpretate_thing ~refine_thing ~ugraph ~mk_localization_tbl in let find_choices item = let a2s = function | GrafiteAst.Ident_alias (id,_) | GrafiteAst.Symbol_alias (id,_,_) -> id | GrafiteAst.Number_alias _ -> "NUM" in let d2s = function | Id (id,_) | Symbol (id,_) -> id | Num _ -> "NUM" in let res = Environment.find item universe in prerr_endline (Printf.sprintf "choices for %s :\n%s" (d2s item) (String.concat ", " (List.map a2s res))); res in let get_instances ctx t = try let choices = find_choices (domain_item_of_ast t) in List.map (fun t0 -> ctx (ast_of_alias_spec t t0)) choices with | Not_found -> [] in match ts with | [] -> None | t0 :: tl -> prerr_endline ("disambiguation of t0 = " ^ pp_thing t0); let is_ambiguous = function | Ast.Ident (_,`Ambiguous) | Ast.Num (_,None) | Ast.Symbol (_,None) -> true | Ast.Case (_,Some (ity,None),_,_) -> (prerr_endline ("ambiguous case" ^ ity);true) | Ast.Case (_,None,_,_) -> prerr_endline "amb1";false | Ast.Case (_,Some (ity,Some r),_,_) -> (prerr_endline ("amb2 " ^ NReference.string_of_reference r);false) | Ast.Ident (n,`Uri u) -> (prerr_endline ("uri " ^ u ^ "inside IDENT " ^ n) ;false ) | _ -> false in let astpp = function | Ast.Ident (id,_) -> "ID " ^ id | Ast.Num _ -> "NUM" | Ast.Symbol (sym,_) -> "SYM " ^ sym | _ -> "ERROR!" in (* get first ambiguous subterm (or return disambiguated term) *) match visit ~pp_term is_ambiguous t0 with | None -> prerr_endline ("not ambiguous:\n" ^ pp_thing t0); Some (t0,tl) | Some (ctx, t) -> prerr_endline ("disambiguating node " ^ astpp t ^ "\nin " ^ pp_thing (ctx t)); (* get possible instantiations of t *) let instances = get_instances ctx t in (* perforate ambiguous subterms and test refinement *) let survivors = List.filter test_interpr instances in disambiguate_list (survivors@tl) ;; (* let rec aux l = match l with | [] -> None | (ctx,u)::vl -> if test u then (ctx,u) else aux (vl@split ctx u) in aux [t] ;;*) (* let rec instantiate_ast = function | Ident (n,Some _) | Symbol (s,Some _) | Num (n,Some _) as t -> [] | Ident (n,None) -> (* output: all possible instantiations of n *) | Symbol (s,None) -> | Num (n,None) -> | AttributedTerm (a,u) -> AttributedTerm (a,f u) | Appl tl -> Appl (List.map f tl) | Binder (k,n,body) -> Binder (k,n,f body) | Case (t,ity,oty,pl) -> let pl' = List.map (fun (p,u) -> p,f u) pl in Case (f t,ity,map_option f oty,pl') | Cast (u,v) -> Cast (f u,f v) | LetIn (n,u,v) -> LetIn (n,f u,f v) | LetRec -> ada (* TODO *) | t -> t *) let disambiguate_thing ~context ~metasenv ~subst ~use_coercions ~string_context_of_context ~initial_ugraph:base_univ ~expty ~mk_implicit ~description_of_alias ~fix_instance ~aliases ~universe ~lookup_in_library ~uri ~pp_thing ~pp_term ~domain_of_thing ~interpretate_thing ~refine_thing ~visit ~mk_localization_tbl (thing_txt,thing_txt_prefix_len,thing) = (* XXX: will be thrown away *) let todo_dom = domain_of_thing ~context:(string_context_of_context context) thing in let rec aux_env env = function | [] -> env | Node (_, item, l) :: tl -> let env = Environment.add item (mk_implicit (match item with | Id _ | Num _ -> true | Symbol _ -> false)) env in aux_env (aux_env env l) tl in let env = aux_env aliases todo_dom in let test_interpr = test_interpr ~context ~metasenv ~subst ~use_coercions ~expty ~env ~uri ~interpretate_thing ~refine_thing ~ugraph:base_univ ~mk_localization_tbl in (* real function *) let rec aux tl = match disambiguate_list ~mk_localization_tbl ~context ~metasenv ~subst ~interpretate_thing ~refine_thing ~ugraph:base_univ ~visit ~use_coercions ~expty ~uri ~env ~universe ~pp_thing ~pp_term tl with | None -> [] | Some (t,tl') -> t::aux tl' in let refine t = let localization_tbl = mk_localization_tbl 503 in match refine_thing metasenv subst context uri ~use_coercions (interpretate_thing ~context ~env ~uri ~is_path:false t ~localization_tbl) expty base_univ ~localization_tbl with | Ok (t',m',s',u') -> ([]:(Environment.key * 'f) list),m',s',t',u' | Uncertain x -> let _,err = Lazy.force x in prerr_endline ("refinement uncertain after disambiguation: " ^ err); assert false | _ -> assert false in if not (test_interpr thing) then raise (NoWellTypedInterpretation (0,[])) else let res = aux [thing] in let res = HExtlib.filter_map (fun t -> try Some (refine t) with _ -> None) res in match res with | [] -> raise (NoWellTypedInterpretation (0,[])) | [t] -> res,false | _ -> res,true ;; (* let disambiguate_thing ~context ~metasenv ~subst ~use_coercions ~string_context_of_context ~initial_ugraph:base_univ ~expty ~mk_implicit ~description_of_alias ~fix_instance ~aliases ~universe ~lookup_in_library ~uri ~pp_thing ~domain_of_thing ~interpretate_thing ~refine_thing ~mk_localization_tbl (thing_txt,thing_txt_prefix_len,thing) = debug_print (lazy "DISAMBIGUATE INPUT"); debug_print (lazy ("TERM IS: " ^ (pp_thing thing))); let thing_dom = domain_of_thing ~context:(string_context_of_context context) thing in debug_print (lazy (sprintf "DISAMBIGUATION DOMAIN: %s"(string_of_domain thing_dom))); let current_dom = Environment.fold (fun item _ dom -> item :: dom) aliases [] in let todo_dom = domain_diff thing_dom current_dom in debug_print (lazy (sprintf "DISAMBIGUATION DOMAIN AFTER DIFF: %s"(string_of_domain todo_dom))); (* (2) lookup function for any item (Id/Symbol/Num) *) let lookup_choices = fun item -> match universe with | None -> lookup_in_library interactive_user_uri_choice input_or_locate_uri item | Some e -> (try fix_instance item (Environment.find item e) with Not_found -> []) in (* items with 1 choice are interpreted ASAP *) let aliases, todo_dom = let rec aux (aliases,acc) = function | [] -> aliases, acc | (Node (_, item,extra) as node) :: tl -> let choices = lookup_choices item in if List.length choices <> 1 then aux (aliases, acc@[node]) tl else let tl = tl @ extra in if Environment.mem item aliases then aux (aliases, acc) tl else aux (Environment.add item (List.hd choices) aliases, acc) tl in aux (aliases,[]) todo_dom in (* (* *) let _ = if benchmark then begin let per_item_choices = List.map (fun dom_item -> try let len = List.length (lookup_choices dom_item) in debug_print (lazy (sprintf "BENCHMARK %s: %d" (string_of_domain_item dom_item) len)); len with No_choices _ -> 0) thing_dom in max_refinements := List.fold_left ( * ) 1 per_item_choices; actual_refinements := 0; domain_size := List.length thing_dom; choices_avg := (float_of_int !max_refinements) ** (1. /. float_of_int !domain_size) end in (* *) *) (* (3) test an interpretation filling with meta uninterpreted identifiers *) let test_env aliases todo_dom ugraph = try let rec aux env = function | [] -> env | Node (_, item, l) :: tl -> let env = Environment.add item (mk_implicit (match item with | Id _ | Num _ -> true | Symbol _ -> false)) env in aux (aux env l) tl in let filled_env = aux aliases todo_dom in let localization_tbl = mk_localization_tbl 503 in let cic_thing = interpretate_thing ~context ~env:filled_env ~uri ~is_path:false thing ~localization_tbl in let foo () = refine_thing metasenv subst context uri ~use_coercions cic_thing expty ugraph ~localization_tbl in refine_profiler.HExtlib.profile foo () with | Try_again msg -> Uncertain (lazy (Stdpp.dummy_loc,Lazy.force msg)) | Invalid_choice loc_msg -> Ko loc_msg in (* (4) build all possible interpretations *) let (@@) (l1,l2,l3) (l1',l2',l3') = l1@l1', l2@l2', l3@l3' in (* aux returns triples Ok/Uncertain/Ko *) (* rem_dom is the concatenation of all the remainin domains *) let rec aux aliases diff lookup_in_todo_dom todo_dom rem_dom = debug_print (lazy ("ZZZ: " ^ string_of_domain todo_dom)); match todo_dom with | [] -> assert (lookup_in_todo_dom = None); (match test_env aliases rem_dom base_univ with | Ok (thing, metasenv,subst,new_univ) -> [ aliases, diff, metasenv, subst, thing, new_univ ], [], [] | Ko loc_msg -> [],[],[aliases,diff,loc_msg,true] | Uncertain loc_msg -> [],[aliases,diff,loc_msg],[]) | Node (locs,item,inner_dom) :: remaining_dom -> debug_print (lazy (sprintf "CHOOSED ITEM: %s" (string_of_domain_item item))); let choices = match lookup_in_todo_dom with None -> lookup_choices item | Some choices -> choices in match choices with [] -> [], [], [aliases, diff, (lazy (List.hd locs, "No choices for " ^ string_of_domain_item item)), true] (* | [codomain_item] -> (* just one choice. We perform a one-step look-up and if the next set of choices is also a singleton we skip this refinement step *) debug_print(lazy (sprintf "%s CHOSEN" (fst codomain_item))); let new_env = Environment.add item codomain_item aliases in let new_diff = (item,codomain_item)::diff in let lookup_in_todo_dom,next_choice_is_single = match remaining_dom with [] -> None,false | (_,he)::_ -> let choices = lookup_choices he in Some choices,List.length choices = 1 in if next_choice_is_single then aux new_env new_diff lookup_in_todo_dom remaining_dom base_univ else (match test_env new_env remaining_dom base_univ with | Ok (thing, metasenv),new_univ -> (match remaining_dom with | [] -> [ new_env, new_diff, metasenv, thing, new_univ ], [] | _ -> aux new_env new_diff lookup_in_todo_dom remaining_dom new_univ) | Uncertain (loc,msg),new_univ -> (match remaining_dom with | [] -> [], [new_env,new_diff,loc,msg,true] | _ -> aux new_env new_diff lookup_in_todo_dom remaining_dom new_univ) | Ko (loc,msg),_ -> [], [new_env,new_diff,loc,msg,true]) *) | _::_ -> let mark_not_significant failures = List.map (fun (env, diff, loc_msg, _b) -> env, diff, loc_msg, false) failures in let classify_errors ((ok_l,uncertain_l,error_l) as outcome) = if ok_l <> [] || uncertain_l <> [] then ok_l,uncertain_l,mark_not_significant error_l else outcome in let rec filter = function | [] -> [],[],[] | codomain_item :: tl -> (*debug_print(lazy (sprintf "%s CHOSEN" (fst codomain_item)));*) let new_env = Environment.add item codomain_item aliases in let new_diff = (item,codomain_item)::diff in (match test_env new_env (inner_dom@remaining_dom@rem_dom) base_univ with | Ok (thing, metasenv,subst,new_univ) -> (* prerr_endline "OK"; *) let res = (match inner_dom with | [] -> [new_env,new_diff,metasenv,subst,thing,new_univ], [], [] | _ -> aux new_env new_diff None inner_dom (remaining_dom@rem_dom) ) in res @@ filter tl | Uncertain loc_msg -> (* prerr_endline ("UNCERTAIN"); *) let res = (match inner_dom with | [] -> [],[new_env,new_diff,loc_msg],[] | _ -> aux new_env new_diff None inner_dom (remaining_dom@rem_dom) ) in res @@ filter tl | Ko loc_msg -> (* prerr_endline "KO"; *) let res = [],[],[new_env,new_diff,loc_msg,true] in res @@ filter tl) in let ok_l,uncertain_l,error_l = classify_errors (filter choices) in let res_after_ok_l = List.fold_right (fun (env,diff,_,_,_,_) res -> aux env diff None remaining_dom rem_dom @@ res ) ok_l ([],[],error_l) in List.fold_right (fun (env,diff,_) res -> aux env diff None remaining_dom rem_dom @@ res ) uncertain_l res_after_ok_l in let aux' aliases diff lookup_in_todo_dom todo_dom = if todo_dom = [] then aux aliases diff lookup_in_todo_dom todo_dom [] else match test_env aliases todo_dom base_univ with | Ok _ | Uncertain _ -> aux aliases diff lookup_in_todo_dom todo_dom [] | Ko (loc_msg) -> [],[],[aliases,diff,loc_msg,true] in let res = match aux' aliases [] None todo_dom with | [],uncertain,errors -> let errors = List.map (fun (env,diff,loc_msg) -> (env,diff,loc_msg,true) ) uncertain @ errors in let errors = List.map (fun (env,diff,loc_msg,significant) -> let env' = filter_map_domain (fun locs domain_item -> try let description = description_of_alias (Environment.find domain_item env) in Some (locs,descr_of_domain_item domain_item,description) with Not_found -> None) thing_dom in let diff= List.map (fun a,b -> a,description_of_alias b) diff in env',diff,loc_msg,significant ) errors in raise (NoWellTypedInterpretation (0,errors)) | [_,diff,metasenv,subst,t,ugraph],_,_ -> debug_print (lazy "SINGLE INTERPRETATION"); [diff,metasenv,subst,t,ugraph], false | l,_,_ -> debug_print (lazy (sprintf "MANY INTERPRETATIONS (%d)" (List.length l))); let choices = List.map (fun (env, _, _, _, _, _) -> map_domain (fun locs domain_item -> let description = description_of_alias (Environment.find domain_item env) in locs,descr_of_domain_item domain_item, description) thing_dom) l in let choosed = interactive_interpretation_choice thing_txt thing_txt_prefix_len choices in (List.map (fun n->let _,d,m,s,t,u= List.nth l n in d,m,s,t,u) choosed), true in res *)