open Util open Util.Vars open Pure (************ Syntax ************************************) (* Normal forms*) (* Var n = n-th De Bruijn index, 0-based *) (*type nf = | Lam of nf | Var of int | i and i = | I of int * nf listx ;;*) type 'nf i_var_ = [ `I of int * 'nf Listx.listx | `Var of int ] type 'nf i_n_var_ = [ `N of int | 'nf i_var_ ] type 'nf i_num_var_ = [ | 'nf i_n_var_ | `Match of 'nf i_num_var_ * (*lift*) int * (*branches*)(int * 'nf) list ref * (*args*)'nf list ] type 'nf nf_ = [ `Lam of (* was_unpacked *) bool * 'nf nf_ | `Bomb | `Pacman | 'nf i_num_var_ ] type nf = nf nf_ type i_var = nf i_var_;; type i_n_var = nf i_n_var_;; type i_num_var = nf i_num_var_;; let hd_of_i_var = function `I (v,_) | `Var v -> v let hd_of = function `I (v,_) | `Var v -> Some v | `N _ -> None | `Match _ | `Bomb -> assert false let lift m (t : nf) = let rec aux_i_num_var l = function `I(n,args) -> (`I((if n < l then n else n+m),Listx.map (aux l) args) : i_num_var) | `Var n -> `Var (if n < l then n else n+m) | `N _ as x -> x | `Match(t,lift,bs,args) -> `Match(aux_i_num_var l t, lift + m, bs, List.map (aux l) args) and aux l = function #i_num_var as x -> (aux_i_num_var l x :> nf) | `Lam(b,nf) -> `Lam (b,aux (l+1) nf) | `Bomb -> `Bomb | `Pacman -> `Pacman in (aux 0 t : nf) ;; (* put t under n lambdas, lifting t accordingtly *) let rec make_lams t = function 0 -> t | n when n > 0 -> `Lam (false,lift 1 (make_lams t (n-1))) | _ -> assert false let free_vars = let rec aux n = function `N _ -> [] | `Var x -> if x < n then [] else [x-n] | `I(x,args) -> (if x < n then [] else [x-n]) @ List.concat (List.map (aux n) (Listx.to_list args)) | `Lam(_,t) -> aux (n+1) t | `Match(t,liftno,bs,args) -> aux n (t :> nf) @ List.concat (List.map (fun (_,t) -> aux (n-liftno) t) !bs) @ List.concat (List.map (aux n) args) | `Bomb | `Pacman -> [] in aux 0 ;; module ToScott = struct let rec t_of_i_num_var = function | `N n -> Scott.mk_n n | `Var v -> Pure.V v | `Match(t,liftno,bs,args) -> let bs = List.map (fun (n,t) -> n, t_of_nf (lift liftno t)) !bs in let t = t_of_i_num_var t in let m = Scott.mk_match t bs in List.fold_left (fun acc t -> Pure.A(acc,t_of_nf t)) m args | `I(v, args) -> Listx.fold_left (fun acc t -> Pure.A(acc,t_of_nf t)) (Pure.V v) args and t_of_nf = function | #i_num_var as x -> t_of_i_num_var x | `Lam(b,f) -> Pure.L (t_of_nf f) | `Bomb -> let f x = Pure.A (x,x) in f (Pure.L (f (Pure.V 0))) | `Pacman -> let f x = Pure.A (x,x) in f (Pure.L (Pure.L (f (Pure.V 0)))) end (************ Pretty-printing ************************************) (* let rec print ?(l=[]) = function `Var n -> print_name l n | `N n -> string_of_int n | `Match(t,bs_lift,bs,args) -> "([" ^ print ~l (t :> nf) ^ " ? " ^ String.concat " | " (List.map (fun (n,t) -> string_of_int n ^ " => " ^ print ~l (lift bs_lift t)) !bs) ^ "] " ^ String.concat " " (List.map (print ~l) args) ^ ")" | `I(n,args) -> "(" ^ print_name l n ^ " " ^ String.concat " " (Listx.to_list (Listx.map (print ~l) args)) ^ ")" | `Lam(_,nf) -> let name = string_of_var (List.length l) in "λ" ^ name ^ "." ^ print ~l:(name::l) (nf : nf) ;; *) let rec string_of_term l = let rec string_of_term_w_pars l = function | `Var n -> print_name l n | `N n -> string_of_int n | `I _ as t -> "(" ^ string_of_term_no_pars_app l (t :> nf) ^ ")" | `Lam _ as t -> "(" ^ string_of_term_no_pars_lam l t ^ ")" | `Match(t,bs_lift,bs,args) -> "(match " ^ string_of_term_no_pars l (t :> nf) ^ " with " ^ String.concat " | " (List.map (fun (n,t) -> string_of_int n ^ " => " ^ string_of_term l (lift bs_lift t)) !bs) ^ "] " ^ String.concat " " (List.map (string_of_term l) args) ^ ")" | `Bomb -> "TNT" | `Pacman -> "PAC" and string_of_term_no_pars_app l = function | `I(n, args) -> print_name l n ^ " " ^ String.concat " " (List.map (string_of_term_w_pars l) (Listx.to_list args)) | #nf as t -> string_of_term_w_pars l t and string_of_term_no_pars_lam l = function | `Lam(_,t) -> let name = string_of_var (List.length l) in "λ" ^ name ^ ". " ^ (string_of_term_no_pars_lam (name::l) t) | _ as t -> string_of_term_no_pars l t and string_of_term_no_pars l : nf -> string = function | `Lam _ as t -> string_of_term_no_pars_lam l t | #nf as t -> string_of_term_no_pars_app l t in string_of_term_no_pars l ;; let rec print ?(l=[]) = string_of_term l;; (************ Hereditary substitutions ************************************) let cast_to_i_var = function #i_var as y -> (y : i_var) | t -> prerr_endline (print (t :> nf)); assert false (* algorithm failed *) let cast_to_i_n_var = function #i_n_var as y -> (y : i_n_var) | t -> prerr_endline (print (t :> nf)); assert false (* algorithm failed *) let cast_to_i_num_var = function #i_num_var as y -> (y : i_num_var) | t -> prerr_endline (print (t :> nf)); assert false (* algorithm failed *) let rec mk_app (h : nf) (arg : nf) = (*let res =*) match h with `I(n,args) -> `I(n,Listx.append (Listx.Nil arg) args) | `Var n -> `I(n, Listx.Nil arg) | `Lam(_,nf) -> subst true 0 arg (nf : nf) | `Match(t,lift,bs,args) -> `Match(t,lift,bs,List.append args [arg]) | `N _ -> assert false (* Numbers cannot be applied *) | `Bomb | `Pacman -> failwith "mk_app su bomba o pacman" (*in let l = ["v0";"v1";"v2"] in prerr_endline ("mk_app h:" ^ print ~l h ^ " arg:" ^ print ~l:l arg ^ " res:" ^ print ~l:l res); res*) and mk_appl h args = (*prerr_endline ("MK_APPL: " ^ print h ^ " " ^ String.concat " " (List.map print args));*) List.fold_left mk_app h args and mk_appx h args = Listx.fold_left mk_app h args and mk_match t bs_lift bs args = (*prerr_endline ("MK_MATCH: ([" ^ print t ^ "] " ^ String.concat " " (Listx.to_list (Listx.map (fun (n,t) -> string_of_int n ^ " => " ^ print t) bs)) ^ ") " ^ String.concat " " (List.map print args));*) match t with `N m -> (try let h = List.assoc m !bs in let h = lift bs_lift h in mk_appl h args with Not_found -> `Match (t,bs_lift,bs,args)) | `I _ | `Var _ | `Match _ -> `Match(t,bs_lift,bs,args) and subst delift_by_one what (with_what : nf) (where : nf) = let rec aux_i_num_var l = function `I(n,args) -> if n = what + l then mk_appx (lift l with_what) (Listx.map (aux l) args) else `I ((if delift_by_one && n >= l then n-1 else n), Listx.map (aux l) args) | `Var n -> if n = what + l then lift l with_what else `Var (if delift_by_one && n >= l then n-1 else n) | `N _ as x -> x | `Match(t,bs_lift,bs,args) -> let bs_lift = bs_lift + if delift_by_one then -1 else 0 in let l' = l - bs_lift in let with_what' = lift l' with_what in (* The following line should be the identity when delift_by_one = true because we are assuming the ts to not contain lambda-bound variables. *) bs := List.map (fun (n,t) -> n,subst false what with_what' t) !bs ; mk_match (cast_to_i_num_var (aux_i_num_var l t)) bs_lift bs (List.map (aux l) args) and aux l(*lift*) = (*function iii -> let res = match iii with*) function | #i_num_var as x -> aux_i_num_var l x | `Lam(b,nf) -> `Lam(b,aux (l+1) nf) | `Bomb -> `Bomb | `Pacman -> `Pacman (*in let ll = ["v0";"v1";"v2"] in prerr_endline ("subst l:" ^ string_of_int l ^ " delift_by_one:" ^ string_of_bool delift_by_one ^ " what:" ^ (List.nth ll what) ^ " with_what:" ^ print ~l:ll with_what ^ " where:" ^ print ~l:ll iii ^ " res:" ^ print ~l:ll res); res*) in aux 0 where ;; (************ Parsing ************************************) let parse' strs = let rec aux = function | Parser.Lam t -> `Lam (true,aux t) | Parser.App (t1, t2) -> mk_app (aux t1) (aux t2) | Parser.Var v -> `Var v in let (tms, free) = Parser.parse_many strs in (List.map aux tms, free) ;; (************** Algorithm(s) ************************) let eta_eq x y = let rec aux = function | `Var n , `Var m -> n = m | `I(n1, l1), `I(n2, l2) -> n1 = n2 && Listx.length l1 = Listx.length l2 && List.for_all aux (List.combine (Listx.to_list l1) (Listx.to_list l2)) | `Lam(_,t1), `Lam(_,t2) -> aux (t1,t2) | `Lam(_,t1), t2 | t2, `Lam(_,t1) -> aux( t1, (mk_app (lift 1 t2) (`Var 0)) ) | `N n1, `N n2 -> n1 = n2 | `Match(u,bs_lift,bs,args), `Match(u',bs_lift',bs',args') -> aux ((u :> nf), (u' :> nf)) && List.length !bs = List.length !bs' && let bs = List.sort (fun (n,_) (m,_) -> compare n m) !bs in let bs' = List.sort (fun (n,_) (m,_) -> compare n m) !bs' in List.for_all (fun ((n,t),(n',t')) -> n = n' && aux (t, t')) (List.combine bs bs') && List.length args = List.length args' && List.for_all aux (List.combine args args') | _ -> false in aux (x, y) ;; let eta_compare x y = if eta_eq x y then 0 else compare x y ;; let eta_eq (#nf as x) (#nf as y) = eta_eq x y;; let rec eta_subterm sub t = if eta_eq sub t then true else match t with | `Lam(_,t') -> eta_subterm (lift 1 sub) t' | `Match(u,liftno,bs,args) -> eta_subterm sub (u :> nf) || List.exists (fun (_, t) -> eta_subterm sub (lift liftno t)) !bs || List.exists (eta_subterm sub) args | `I(v, args) -> List.exists (eta_subterm sub) (Listx.to_list args) || (match sub with | `Var v' -> v = v' | `I(v', args') -> v = v' && Listx.length args' < Listx.length args && List.for_all (fun (x,y) -> eta_eq x y) (List.combine (Util.take (Listx.length args') (Listx.to_list args)) (Listx.to_list args')) | _ -> false ) | `N _ | `Var _ | `Bomb | `Pacman -> false ;; let eta_subterm (#nf as x) (#nf as y) = eta_subterm x y;;