let (++) f g x = f (g x);; let id x = x;; let rec fold_nat f x n = if n = 0 then x else f (fold_nat f x (n-1)) n ;; let print_hline = Console.print_hline;; open Pure type var = int;; type t = | V of var | A of t * t | L of t | B (* bottom *) | C of int ;; let delta = L(A(V 0, V 0));; let eta_eq' = let rec aux l1 l2 t1 t2 = match t1, t2 with | L t1, L t2 -> aux l1 l2 t1 t2 | L t1, t2 -> aux l1 (l2+1) t1 t2 | t1, L t2 -> aux (l1+1) l2 t1 t2 | V a, V b -> a + l1 = b + l2 | C a, C b -> a = b | A(t1,t2), A(u1,u2) -> aux l1 l2 t1 u1 && aux l1 l2 t2 u2 | _, _ -> false in aux ;; let eta_eq = eta_eq' 0 0;; (* is arg1 eta-subterm of arg2 ? *) let eta_subterm u = let rec aux lev t = eta_eq' lev 0 u t || match t with | L t -> aux (lev+1) t | A(t1, t2) -> aux lev t1 || aux lev t2 | _ -> false in aux 0 ;; (* does NOT lift t *) let mk_lams = fold_nat (fun x _ -> L x) ;; let string_of_t = let string_of_bvar = let bound_vars = ["x"; "y"; "z"; "w"; "q"] in let bvarsno = List.length bound_vars in fun nn -> if nn < bvarsno then List.nth bound_vars nn else "x" ^ (string_of_int (nn - bvarsno + 1)) in let rec string_of_term_w_pars level = function | V v -> if v >= level then "`" ^ string_of_int (v-level) else string_of_bvar (level - v-1) | C n -> "c" ^ string_of_int n | A _ | L _ as t -> "(" ^ string_of_term_no_pars level t ^ ")" | B -> "BOT" and string_of_term_no_pars_app level = function | A(t1,t2) -> string_of_term_no_pars_app level t1 ^ " " ^ string_of_term_w_pars level t2 | _ as t -> string_of_term_w_pars level t and string_of_term_no_pars level = function | L t -> "λ" ^ string_of_bvar level ^ ". " ^ string_of_term_no_pars (level+1) t | _ as t -> string_of_term_no_pars_app level t in string_of_term_no_pars 0 ;; type problem = { orig_freshno: int ; freshno : int ; div : t ; conv : t ; sigma : (var * t) list (* substitutions *) ; stepped : var list ; phase : [`One | `Two] (* :'( *) } let string_of_problem p = let lines = [ "[stepped] " ^ String.concat " " (List.map string_of_int p.stepped); "[DV] " ^ string_of_t p.div; "[CV] " ^ string_of_t p.conv; ] in String.concat "\n" lines ;; exception Done of (var * t) list (* substitution *);; exception Fail of int * string;; let problem_fail p reason = print_endline "!!!!!!!!!!!!!!! FAIL !!!!!!!!!!!!!!!"; print_endline (string_of_problem p); raise (Fail (-1, reason)) ;; let freshvar ({freshno} as p) = {p with freshno=freshno+1}, freshno+1 ;; let rec is_inert = function | A(t,_) -> is_inert t | V _ -> true | C _ | L _ | B -> false ;; let is_var = function V _ -> true | _ -> false;; let is_lambda = function L _ -> true | _ -> false;; let rec no_leading_lambdas = function | L t -> 1 + no_leading_lambdas t | _ -> 0 ;; let rec get_inert = function | V n -> (n,0) | A(t, _) -> let hd,args = get_inert t in hd,args+1 | _ -> assert false ;; let rec subst level delift sub = function | V v -> if v = level + fst sub then lift level (snd sub) else V (if delift && v > level then v-1 else v) | L t -> let t = subst (level + 1) delift sub t in if t = B then B else L t | A (t1,t2) -> let t1 = subst level delift sub t1 in let t2 = subst level delift sub t2 in mk_app t1 t2 | C _ as t -> t | B -> B and mk_app t1 t2 = if t2 = B || (t1 = delta && t2 = delta) then B else match t1 with | C _ as t -> t | B -> B | L t1 -> subst 0 true (0, t2) t1 | _ -> A (t1, t2) and lift n = let rec aux lev = function | V m -> V (if m >= lev then m + n else m) | L t -> L (aux (lev+1) t) | A (t1, t2) -> A (aux lev t1, aux lev t2) | C _ as t -> t | B -> B in aux 0 ;; let subst = subst 0 false;; let subst_in_problem (sub: var * t) (p: problem) = print_endline ("-- SUBST " ^ string_of_t (V (fst sub)) ^ " |-> " ^ string_of_t (snd sub)); {p with div=subst sub p.div; conv=subst sub p.conv; stepped=(fst sub)::p.stepped; sigma=sub::p.sigma} ;; let get_subterm_with_head_and_args hd_var n_args = let rec aux lev = function | C _ | V _ | B -> None | L t -> aux (lev+1) t | A(t1,t2) as t -> let hd_var', n_args' = get_inert t1 in if hd_var' = hd_var + lev && n_args <= 1 + n_args' then Some (lift ~-lev t) else match aux lev t2 with | None -> aux lev t1 | Some _ as res -> res in aux 0 ;; let rec purify = function | L t -> Pure.L (purify t) | A (t1,t2) -> Pure.A (purify t1, purify t2) | V n -> Pure.V n | C _ -> Pure.V max_int (* FIXME *) | B -> Pure.B ;; let check p sigma = print_endline "Checking..."; let div = purify p.div in let conv = purify p.conv in let sigma = List.map (fun (v,t) -> v, purify t) sigma in let freshno = List.fold_right (fun (x,_) -> max x) sigma 0 in let env = Pure.env_of_sigma freshno sigma in assert (Pure.diverged (Pure.mwhd (env,div,[]))); print_endline " D diverged."; assert (not (Pure.diverged (Pure.mwhd (env,conv,[])))); print_endline " C converged."; () ;; let sanity p = print_endline (string_of_problem p); (* non cancellare *) if p.conv = B then problem_fail p "p.conv diverged"; if p.div = B then raise (Done p.sigma); if p.phase = `Two && p.div = delta then raise (Done p.sigma); if not (is_inert p.div) then problem_fail p "p.div converged"; p ;; (* drops the arguments of t after the n-th *) let inert_cut_at n t = let rec aux t = match t with | V _ as t -> 0, t | A(t1,_) as t -> let k', t' = aux t1 in if k' = n then n, t' else k'+1, t | _ -> assert false in snd (aux t) ;; let find_eta_difference p t n_args = let t = inert_cut_at n_args t in let rec aux t u k = match t, u with | V _, V _ -> assert false (* div subterm of conv *) | A(t1,t2), A(u1,u2) -> if not (eta_eq t2 u2) then (print_endline((string_of_t t2) ^ " <> " ^ (string_of_t u2)); k) else aux t1 u1 (k-1) | _, _ -> assert false in aux p.div t n_args ;; let compute_max_lambdas_at hd_var j = let rec aux hd = function | A(t1,t2) -> (if get_inert t1 = (hd, j) then max ( (*FIXME*) if is_inert t2 && let hd', j' = get_inert t2 in hd' = hd then let hd', j' = get_inert t2 in j - j' else no_leading_lambdas t2) else id) (max (aux hd t1) (aux hd t2)) | L t -> aux (hd+1) t | V _ -> 0 | _ -> assert false in aux hd_var ;; let print_cmd s1 s2 = print_endline (">> " ^ s1 ^ " " ^ s2);; (* eat the arguments of the divergent and explode. It does NOT perform any check, may fail if done unsafely *) let eat p = print_cmd "EAT" ""; let var, k = get_inert p.div in let phase = p.phase in let p, t = match phase with | `One -> let n = 1 + max (compute_max_lambdas_at var k p.div) (compute_max_lambdas_at var k p.conv) in (* apply fresh vars *) let p, t = fold_nat (fun (p, t) _ -> let p, v = freshvar p in p, A(t, V (v + k)) ) (p, V 0) n in let p = {p with phase=`Two} in p, A(t, delta) | `Two -> p, delta in let subst = var, mk_lams t k in let p = subst_in_problem subst p in sanity p; let p = if phase = `One then {p with div = (match p.div with A(t,_) -> t | _ -> assert false)} else p in sanity p ;; (* step on the head of div, on the k-th argument, with n fresh vars *) let step k n p = let var, _ = get_inert p.div in print_cmd "STEP" ("on " ^ string_of_t (V var) ^ " (of:" ^ string_of_int n ^ ")"); let p, t = (* apply fresh vars *) fold_nat (fun (p, t) _ -> let p, v = freshvar p in p, A(t, V (v + k + 1)) ) (p, V 0) n in let t = (* apply unused bound variables V_{k-1}..V_1 *) fold_nat (fun t m -> A(t, V (k-m+1))) t k in let t = mk_lams t (k+1) in (* make leading lambdas *) let subst = var, t in let p = subst_in_problem subst p in sanity p ;; ;; let parse strs = let rec aux level = function | Parser_andrea.Lam t -> L (aux (level + 1) t) | Parser_andrea.App (t1, t2) -> if level = 0 then mk_app (aux level t1) (aux level t2) else A(aux level t1, aux level t2) | Parser_andrea.Var v -> V v in let (tms, free) = Parser_andrea.parse_many strs in (List.map (aux 0) tms, free) ;; let problem_of div conv = print_hline (); let [@warning "-8"] [div; conv], var_names = parse ([div; conv]) in let varno = List.length var_names in let p = {orig_freshno=varno; freshno=1+varno; div; conv; sigma=[]; stepped=[]; phase=`One} in (* initial sanity check *) sanity p ;; let exec div conv cmds = let p = problem_of div conv in try problem_fail (List.fold_left (|>) p cmds) "Problem not completed" with | Done _ -> () ;; let rec auto p = let hd_var, n_args = get_inert p.div in match get_subterm_with_head_and_args hd_var n_args p.conv with | None -> (try let phase = p.phase in let p = eat p in if phase = `Two then problem_fail p "Auto.2 did not complete the problem" else auto p with Done sigma -> sigma) | Some t -> let j = find_eta_difference p t n_args - 1 in let k = 1 + max (compute_max_lambdas_at hd_var j p.div) (compute_max_lambdas_at hd_var j p.conv) in let p = step j k p in auto p ;; let interactive div conv cmds = let p = problem_of div conv in try ( let p = List.fold_left (|>) p cmds in let rec f p cmds = let nth spl n = int_of_string (List.nth spl n) in let read_cmd () = let s = read_line () in let spl = Str.split (Str.regexp " +") s in s, let uno = List.hd spl in try if uno = "eat" then eat else if uno = "step" then step (nth spl 1) (nth spl 2) else failwith "Wrong input." with Failure s -> print_endline s; (fun x -> x) in let str, cmd = read_cmd () in let cmds = (" " ^ str ^ ";")::cmds in try let p = cmd p in f p cmds with | Done _ -> print_endline "Done! Commands history: "; List.iter print_endline (List.rev cmds) in f p [] ) with Done _ -> () ;; let rec conv_join = function | [] -> "@" | x::xs -> conv_join xs ^ " ("^ x ^")" ;; let auto' a b = let p = problem_of a (conv_join b) in let sigma = auto p in check p sigma ;; (* Example usage of exec, interactive: exec "x x" (conv_join["x y"; "y y"; "y x"]) [ step 0 1; eat ] ;; interactive "x y" "@ (x x) (y x) (y z)" [step 0 1; step 0 2; eat] ;; *) auto' "x x" ["x y"; "y y"; "y x"] ;; auto' "x y" ["x (_. x)"; "y z"; "y x"] ;; auto' "a (x. x b) (x. x c)" ["a (x. b b) @"; "a @ c"; "a (x. x x) a"; "a (a a a) (a c c)"] ;; auto' "x (y. x y y)" ["x (y. x y x)"] ;; auto' "x a a a a" [ "x b a a a"; "x a b a a"; "x a a b a"; "x a a a b"; ] ;; (* Controesempio ad usare un conto dei lambda che non considere le permutazioni *) auto' "x a a a a (x (x. x x) @ @ (_._.x. x x) x) b b b" [ "x a a a a (_. a) b b b"; "x a a a a (_. _. _. _. x. y. x y)"; ] ;; print_hline(); print_endline "ALL DONE. " let solve div convs = let p = problem_of div (conv_join convs) in if eta_subterm p.div p.conv then print_endline "!!! div is subterm of conv. Problem was not run !!!" else check p (auto p) ;;