let (++) f g x = f (g x);; let id x = x;; let rec fold_nat f x n = if n = 0 then x else f (fold_nat f x (n-1)) n ;; let print_hline = Console.print_hline;; open Pure type var = int;; type t = | V of var | A of (bool ref) * t * t | L of (bool * t) ;; let measure_of_t = let rec aux acc = function | V _ -> acc, 0 | A(b,t1,t2) -> let acc, m1 = aux acc t1 in let acc, m2 = aux acc t2 in if not (List.memq b acc) && !b then b::acc, 1 + m1 + m2 else acc, m1 + m2 | L(b,t) -> if b then aux acc t else acc, 0 in snd ++ (aux []) ;; let index_of x = let rec aux n = function [] -> None | x'::_ when x == x' -> Some n | _::xs -> aux (n+1) xs in aux 1 ;; let sep_of_app = let apps = ref [] in function r when not !r -> " " | r -> let i = match index_of r !apps with Some i -> i | None -> apps := !apps @ [r]; List.length !apps in " " ^ string_of_int i ^ ":" ;; let string_of_t = let string_of_bvar = let bound_vars = ["x"; "y"; "z"; "w"; "q"] in let bvarsno = List.length bound_vars in fun nn -> if nn < bvarsno then List.nth bound_vars nn else "x" ^ (string_of_int (nn - bvarsno + 1)) in let rec string_of_term_w_pars level = function | V v -> if v >= level then "`" ^ string_of_int (v-level) else string_of_bvar (level - v-1) | A _ | L _ as t -> "(" ^ string_of_term_no_pars level t ^ ")" and string_of_term_no_pars_app level = function | A(b,t1,t2) -> string_of_term_no_pars_app level t1 ^ sep_of_app b ^ string_of_term_w_pars level t2 | _ as t -> string_of_term_w_pars level t and string_of_term_no_pars level = function | L(_,t) -> "λ" ^ string_of_bvar level ^ ". " ^ string_of_term_no_pars (level+1) t | _ as t -> string_of_term_no_pars_app level t in string_of_term_no_pars 0 ;; let delta = L(true,A(ref true,V 0, V 0));; (* does NOT lift the argument *) let mk_lams = fold_nat (fun x _ -> L(false,x)) ;; type problem = { orig_freshno: int ; freshno : int ; div : t ; conv : t ; sigma : (var * t) list (* substitutions *) ; phase : [`One | `Two] (* :'( *) } let string_of_problem p = let lines = [ "[measure] " ^ string_of_int (measure_of_t p.div); "[DV] " ^ string_of_t p.div; "[CV] " ^ string_of_t p.conv; ] in String.concat "\n" lines ;; exception B;; exception Done of (var * t) list (* substitution *);; exception Fail of int * string;; let problem_fail p reason = print_endline "!!!!!!!!!!!!!!! FAIL !!!!!!!!!!!!!!!"; print_endline (string_of_problem p); raise (Fail (-1, reason)) ;; let freshvar ({freshno} as p) = {p with freshno=freshno+1}, freshno+1 ;; let rec is_inert = function | A(_,t,_) -> is_inert t | V _ -> true | L _ -> false ;; let is_var = function V _ -> true | _ -> false;; let is_lambda = function L _ -> true | _ -> false;; let rec get_inert = function | V n -> (n,0) | A(_,t,_) -> let hd,args = get_inert t in hd,args+1 | _ -> assert false ;; (* precomputes the number of leading lambdas in a term, after replacing _v_ w/ a term starting with n lambdas *) let rec no_leading_lambdas v n = function | L(_,t) -> 1 + no_leading_lambdas (v+1) n t | A _ as t -> let v', m = get_inert t in if v = v' then max 0 (n - m) else 0 | V v' -> if v = v' then n else 0 ;; (* b' is true iff we are substituting the argument of a step and the application of the redex was true. Therefore we need to set the new app to true. *) let rec subst b' level delift sub = function | V v -> if v = level + fst sub then lift level (snd sub) else V (if delift && v > level then v-1 else v) | L(b,t) -> L(b, subst b' (level + 1) delift sub t) | A(_,t1,(V v as t2)) when b' && v = level + fst sub -> mk_app (ref true) (subst b' level delift sub t1) (subst b' level delift sub t2) | A(b,t1,t2) -> mk_app b (subst b' level delift sub t1) (subst b' level delift sub t2) (* b is - a fresh ref true if we want to create a real application from scratch - a shared ref true if we substituting in the head of a real application *) and mk_app b' t1 t2 = if t1 = delta && t2 = delta then raise B else match t1 with | L(b,t1) -> let last_lam = match t1 with L _ -> false | _ -> true in if not b && last_lam then b' := false ; subst (!b' && not b && not last_lam) 0 true (0, t2) t1 | _ -> A (b', t1, t2) and lift n = let rec aux lev = function | V m -> V (if m >= lev then m + n else m) | L(b,t) -> L(b,aux (lev+1) t) | A (b,t1, t2) -> A (b,aux lev t1, aux lev t2) in aux 0 ;; let subst = subst false 0 false;; let mk_app t1 = mk_app (ref true) t1;; let eta_eq = let rec aux t1 t2 = match t1, t2 with | L(_,t1), L(_,t2) -> aux t1 t2 | L(_,t1), t2 -> aux t1 (A(ref true,lift 1 t2,V 0)) | t1, L(_,t2) -> aux (A(ref true,lift 1 t1,V 0)) t2 | V a, V b -> a = b | A(_,t1,t2), A(_,u1,u2) -> aux t1 u1 && aux t2 u2 | _, _ -> false in aux ;; (* is arg1 eta-subterm of arg2 ? *) let eta_subterm u = let rec aux lev t = eta_eq u (lift lev t) || match t with | L(_, t) -> aux (lev+1) t | A(_, t1, t2) -> aux lev t1 || aux lev t2 | _ -> false in aux 0 ;; let subst_in_problem ((v, t) as sub) p = print_endline ("-- SUBST " ^ string_of_t (V v) ^ " |-> " ^ string_of_t t); let sigma = sub::p.sigma in let div = try subst sub p.div with B -> raise (Done sigma) in let conv = try subst sub p.conv with B -> raise (Fail(-1,"p.conv diverged")) in {p with div; conv; sigma} ;; let get_subterm_with_head_and_args hd_var n_args = let rec aux lev = function | V _ -> None | L(_,t) -> aux (lev+1) t | A(_,t1,t2) as t -> let hd_var', n_args' = get_inert t1 in if hd_var' = hd_var + lev && n_args <= 1 + n_args' (* the `+1` above is because of t2 *) then Some (lift ~-lev t) else match aux lev t2 with | None -> aux lev t1 | Some _ as res -> res in aux 0 ;; let rec purify = function | L(_,t) -> Pure.L (purify t) | A(_,t1,t2) -> Pure.A (purify t1, purify t2) | V n -> Pure.V n ;; let check p sigma = print_endline "Checking..."; let div = purify p.div in let conv = purify p.conv in let sigma = List.map (fun (v,t) -> v, purify t) sigma in let freshno = List.fold_right (max ++ fst) sigma 0 in let env = Pure.env_of_sigma freshno sigma in assert (Pure.diverged (Pure.mwhd (env,div,[]))); print_endline " D diverged."; assert (not (Pure.diverged (Pure.mwhd (env,conv,[])))); print_endline " C converged."; () ;; let sanity p = print_endline (string_of_problem p); (* non cancellare *) if p.phase = `Two && p.div = delta then raise (Done p.sigma); if not (is_inert p.div) then problem_fail p "p.div converged"; p ;; (* drops the arguments of t after the n-th *) (* FIXME! E' usato in modo improprio contando sul fatto errato che ritorna un inerte lungo esattamente n *) let inert_cut_at n t = let rec aux t = match t with | V _ as t -> 0, t | A(_,t1,_) as t -> let k', t' = aux t1 in if k' = n then n, t' else k'+1, t | _ -> assert false in snd (aux t) ;; (* return the index of the first argument with a difference (the first argument is 0) precondition: p.div and t have n+1 arguments *) let find_eta_difference p t argsno = let t = inert_cut_at argsno t in let rec aux t u k = match t, u with | V _, V _ -> None | A(_,t1,t2), A(_,u1,u2) -> (match aux t1 u1 (k-1) with | None -> if not (eta_eq t2 u2) then Some (k-1) else None | Some j -> Some j) | _, _ -> assert false in match aux p.div t argsno with | None -> problem_fail p "no eta difference found (div subterm of conv?)" | Some j -> j ;; let compute_max_lambdas_at hd_var j = let rec aux hd = function | A(_,t1,t2) -> (if get_inert t1 = (hd, j) then max ( (*FIXME*) if is_inert t2 && let hd', j' = get_inert t2 in hd' = hd then let hd', j' = get_inert t2 in j - j' else no_leading_lambdas hd_var j t2) else id) (max (aux hd t1) (aux hd t2)) | L(_,t) -> aux (hd+1) t | V _ -> 0 in aux hd_var ;; let print_cmd s1 s2 = print_endline (">> " ^ s1 ^ " " ^ s2);; (* step on the head of div, on the k-th argument, with n fresh vars *) let step k n p = let var, _ = get_inert p.div in print_cmd "STEP" ("on " ^ string_of_t (V var) ^ " (of:" ^ string_of_int n ^ ")"); let p, t = (* apply fresh vars *) fold_nat (fun (p, t) _ -> let p, v = freshvar p in p, A(ref false, t, V (v + k + 1)) ) (p, V 0) n in let t = (* apply bound variables V_k..V_0 *) fold_nat (fun t m -> A(ref false, t, V (k-m+1))) t (k+1) in let t = mk_lams t (k+1) in (* make leading lambdas *) let subst = var, t in let p = subst_in_problem subst p in sanity p ;; let finish p = let compute_max_arity = let rec aux n = function | A(_,t1,t2) -> max (aux (n+1) t1) (aux 0 t2) | L(_,t) -> max n (aux 0 t) | V _ -> n in aux 0 in print_cmd "FINISH" ""; let div_hd, div_nargs = get_inert p.div in let j = div_nargs - 1 in let arity = compute_max_arity p.conv in let n = 1 + arity + max (compute_max_lambdas_at div_hd j p.div) (compute_max_lambdas_at div_hd j p.conv) in let p = step j n p in let div_hd, div_nargs = get_inert p.div in let rec aux m = function A(_,t1,t2) -> if is_var t2 then (let delta_var, _ = get_inert t2 in if delta_var <> div_hd && get_subterm_with_head_and_args delta_var 1 p.conv = None then m, delta_var else aux (m-1) t1) else aux (m-1) t1 | _ -> assert false in let m, delta_var = aux div_nargs p.div in let p = subst_in_problem (delta_var, delta) p in let p = subst_in_problem (div_hd, mk_lams delta (m-1)) p in sanity p ;; let rec auto p = let hd_var, n_args = get_inert p.div in match get_subterm_with_head_and_args hd_var n_args p.conv with | None -> (try problem_fail (finish p) "Auto.2 did not complete the problem" with Done sigma -> sigma) (* (try let phase = p.phase in let p = eat p in if phase = `Two then problem_fail p "Auto.2 did not complete the problem" else auto p with Done sigma -> sigma) *) | Some t -> let j = find_eta_difference p t n_args in let k = 1 + max (compute_max_lambdas_at hd_var j p.div) (compute_max_lambdas_at hd_var j p.conv) in let m1 = measure_of_t p.div in let p = step j k p in let m2 = measure_of_t p.div in (if m2 >= m1 then (print_string ("WARNING! Measure did not decrease : " ^ string_of_int m2 ^ " >= " ^ string_of_int m1 ^ " (press )"); ignore(read_line()))); auto p ;; let problem_of (label, div, convs, ps, var_names) = print_hline (); let rec aux = function | `Lam(_, t) -> L (true,aux t) | `I ((v,_), args) -> Listx.fold_left (fun x y -> mk_app x (aux y)) (V v) args | `Var(v,_) -> V v | `N _ | `Match _ -> assert false in assert (List.length ps = 0); let convs = List.rev convs in let conv = if List.length convs = 1 then aux (List.hd convs :> Num.nf) else List.fold_left (fun x y -> mk_app x (aux (y :> Num.nf))) (V (List.length var_names)) convs in let var_names = "@" :: var_names in let div = match div with | Some div -> aux (div :> Num.nf) | None -> assert false in let varno = List.length var_names in let p = {orig_freshno=varno; freshno=1+varno; div; conv; sigma=[]; phase=`One} in (* initial sanity check *) sanity p ;; let solve p = if eta_subterm p.div p.conv then print_endline "!!! div is subterm of conv. Problem was not run !!!" else check p (auto p) ;; Problems.main (solve ++ problem_of); (* Example usage of interactive: *) (* let interactive div conv cmds = let p = problem_of div conv in try ( let p = List.fold_left (|>) p cmds in let rec f p cmds = let nth spl n = int_of_string (List.nth spl n) in let read_cmd () = let s = read_line () in let spl = Str.split (Str.regexp " +") s in s, let uno = List.hd spl in try if uno = "eat" then eat else if uno = "step" then step (nth spl 1) (nth spl 2) else failwith "Wrong input." with Failure s -> print_endline s; (fun x -> x) in let str, cmd = read_cmd () in let cmds = (" " ^ str ^ ";")::cmds in try let p = cmd p in f p cmds with | Done _ -> print_endline "Done! Commands history: "; List.iter print_endline (List.rev cmds) in f p [] ) with Done _ -> () ;; *) (* interactive "x y" "@ (x x) (y x) (y z)" [step 0 1; step 0 2; eat] ;; *)