let (++) f g x = f (g x);; let id x = x;; let rec fold_nat f x n = if n = 0 then x else f (fold_nat f x (n-1)) n ;; let print_hline = Console.print_hline;; open Pure type var = int;; type t = | V of var | A of t * t | L of (t * t list (*garbage*)) | C (* constant *) ;; let delta = L(A(V 0, V 0),[]);; let rec is_stuck = function | C -> true | A(t,_) -> is_stuck t | _ -> false ;; let eta_eq' = let rec aux l1 l2 t1 t2 = let stuck1, stuck2 = is_stuck t1, is_stuck t2 in match t1, t2 with | _, _ when not stuck1 && stuck2 -> false | _, _ when stuck1 -> true | L t1, L t2 -> aux l1 l2 (fst t1) (fst t2) | L t1, t2 -> aux l1 (l2+1) (fst t1) t2 | t1, L t2 -> aux (l1+1) l2 t1 (fst t2) | V a, V b -> a + l1 = b + l2 | A(t1,t2), A(u1,u2) -> aux l1 l2 t1 u1 && aux l1 l2 t2 u2 | _, _ -> false in aux ;; let eta_eq = eta_eq' 0 0;; (* is arg1 eta-subterm of arg2 ? *) let eta_subterm u = let rec aux lev t = if t = C then false else (eta_eq' lev 0 u t || match t with | L(t,g) -> List.exists (aux (lev+1)) (t::g) | A(t1, t2) -> aux lev t1 || aux lev t2 | _ -> false) in aux 0 ;; (* does NOT lift the argument *) let mk_lams = fold_nat (fun x _ -> L(x,[])) ;; let string_of_t = let string_of_bvar = let bound_vars = ["x"; "y"; "z"; "w"; "q"] in let bvarsno = List.length bound_vars in fun nn -> if nn < bvarsno then List.nth bound_vars nn else "x" ^ (string_of_int (nn - bvarsno + 1)) in let rec string_of_term_w_pars level = function | V v -> if v >= level then "`" ^ string_of_int (v-level) else string_of_bvar (level - v-1) | C -> "C" | A _ | L _ as t -> "(" ^ string_of_term_no_pars level t ^ ")" and string_of_term_no_pars_app level = function | A(t1,t2) -> string_of_term_no_pars_app level t1 ^ " " ^ string_of_term_w_pars level t2 | _ as t -> string_of_term_w_pars level t and string_of_term_no_pars level = function | L(t,g) -> "λ" ^ string_of_bvar level ^ ". " ^ string_of_term_no_pars (level+1) t ^ (if g = [] then "" else String.concat ", " ("" :: List.map (string_of_term_w_pars (level+1)) g)) | _ as t -> string_of_term_no_pars_app level t in string_of_term_no_pars 0 ;; type problem = { orig_freshno: int ; freshno : int ; label : string ; div : t ; conv : t ; sigma : (var * t) list (* substitutions *) } let string_of_problem p = let lines = [ "[DV] " ^ string_of_t p.div; "[CV] " ^ string_of_t p.conv; ] in String.concat "\n" lines ;; exception B;; exception Done of (var * t) list (* substitution *);; exception Unseparable of string;; exception Backtrack of string;; let rec try_all label f = function | x::xs -> (try f x with Backtrack _ -> try_all label f xs) | [] -> raise (Backtrack label) ;; let problem_fail p reason = print_endline "!!!!!!!!!!!!!!! FAIL !!!!!!!!!!!!!!!"; print_endline (string_of_problem p); failwith reason ;; let freshvar ({freshno} as p) = {p with freshno=freshno+1}, freshno+1 ;; (* CSC: rename? is an applied C an inert? is_inert and get_inert work inconsistently *) let rec is_inert = function | A(t,_) -> is_inert t | V _ -> true | C | L _ -> false ;; let rec is_constant = function C -> true | V _ -> false | A(t,_) | L(t,_) -> is_constant t ;; let rec get_inert = function | V _ | C as t -> (t,0) | A(t, _) -> let hd,args = get_inert t in hd,args+1 | _ -> assert false ;; let args_of_inert = let rec aux acc = function | V _ | C -> acc | A(t, a) -> aux (a::acc) t | _ -> assert false in aux [] ;; (* precomputes the number of leading lambdas in a term, after replacing _v_ w/ a term starting with n lambdas *) let rec no_leading_lambdas v n = function | L(t,_) -> 1 + no_leading_lambdas (v+1) n t | A _ as t -> let v', m = get_inert t in if V v = v' then max 0 (n - m) else 0 | V v' -> if v = v' then n else 0 | C -> 0 ;; let rec subst level delift sub = function | V v -> (if v = level + fst sub then lift level (snd sub) else V (if delift && v > level then v-1 else v)), [] | L x -> let t, g = subst_in_lam (level+1) delift sub x in L(t, g), [] | A (t1,t2) -> let t1, g1 = subst level delift sub t1 in let t2, g2 = subst level delift sub t2 in let t3, g3 = mk_app t1 t2 in t3, g1 @ g2 @ g3 | C -> C, [] and subst_in_lam level delift sub (t, g) = let t', g' = subst level delift sub t in let g'' = List.fold_left (fun xs t -> let x,y = subst level delift sub t in (x :: y @ xs)) g' g in t', g'' and mk_app t1 t2 = if t1 = delta && t2 = delta then raise B else match t1 with | L x -> subst_in_lam 0 true (0, t2) x | _ -> A (t1, t2), [] and lift n = let rec aux lev = function | V m -> V (if m >= lev then m + n else m) | L(t,g) -> L (aux (lev+1) t, List.map (aux (lev+1)) g) | A (t1, t2) -> A (aux lev t1, aux lev t2) | C -> C in aux 0 ;; let subst' = subst;; let subst = subst' 0 false;; let rec mk_apps t = function | u::us -> mk_apps (A(t,u)) us | [] -> t ;; let subst_in_problem ((v, t) as sub) p = print_endline ("-- SUBST " ^ string_of_t (V v) ^ " |-> " ^ string_of_t t); let sigma = sub :: p.sigma in let div, g = try subst sub p.div with B -> raise (Done sigma) in let divs = div :: g in let conv, g = try subst sub p.conv with B -> raise (Backtrack "p.conv diverged") in let conv = if g = [] then conv else mk_apps C (conv::g) in divs, {p with div; conv; sigma} ;; let get_subterms_with_head hd_var = let rec aux lev inert_done g = function | L(t,g') -> List.fold_left (aux (lev+1) false) g (t::g') | C | V _ -> g | A(t1,t2) as t -> let hd_var', n_args' = get_inert t1 in if not inert_done && hd_var' = V (hd_var + lev) then lift ~-lev t :: aux lev false (aux lev true g t1) t2 else aux lev false (aux lev true g t1) t2 in aux 0 false [] ;; let purify = let rec aux = function | L(t,g) -> let t = aux (lift (List.length g) t) in let t = List.fold_left (fun t g -> Pure.A(Pure.L t, aux g)) t g in Pure.L t | A (t1,t2) -> Pure.A (aux t1, aux t2) | V n -> Pure.V (n) | C -> Pure.V (min_int/2) in aux ;; let check p sigma = print_endline "Checking..."; let div = purify p.div in let conv = purify p.conv in let sigma = List.map (fun (v,t) -> v, purify t) sigma in let freshno = List.fold_right (max ++ fst) sigma 0 in let env = Pure.env_of_sigma freshno sigma in (if not (Pure.diverged (Pure.mwhd (env,div,[]))) then failwith "D converged in Pure"); print_endline "- D diverged."; (if Pure.diverged (Pure.mwhd (env,conv,[])) then failwith "C diverged in Pure"); print_endline "- C converged."; () ;; let sanity p = print_endline (string_of_problem p); (* non cancellare *) (* Trailing constant args can be removed because do not contribute to eta-diff *) let rec remove_trailing_constant_args = function | A(t1, t2) when is_constant t2 -> remove_trailing_constant_args t1 | _ as t -> t in let p = {p with div=remove_trailing_constant_args p.div} in p ;; (* drops the arguments of t after the n-th *) let inert_cut_at n t = let rec aux t = match t with | V _ as t -> 0, t | A(t1,_) as t -> let k', t' = aux t1 in if k' = n then n, t' else k'+1, t | _ -> assert false in snd (aux t) ;; (* return the index of the first argument with a difference (the first argument is 0) *) let find_eta_difference p t = let divargs = args_of_inert p.div in let conargs = args_of_inert t in let rec range i j = if j = 0 then [] else i :: range (i+1) (j-1) in let rec aux k divargs conargs = match divargs,conargs with [],conargs -> range k (List.length conargs) | _::_,[] -> [k] | t1::divargs,t2::conargs -> (if not (eta_eq t1 t2) then [k] else []) @ aux (k+1) divargs conargs in aux 0 divargs conargs ;; let compute_max_lambdas_at hd_var j = let rec aux hd = function | A(t1,t2) -> max (max (aux hd t1) (aux hd t2)) (if get_inert t1 = (V hd, j) then no_leading_lambdas hd (j+1) t2 else 0) | L(t,_) -> aux (hd+1) t | V _ | C -> 0 in aux hd_var ;; let print_cmd s1 s2 = print_endline (">> " ^ s1 ^ " " ^ s2);; (* returns Some i if i is the smallest integer s.t. p holds for the i-th element of the list in input *) let smallest_such_that p = let rec aux i = function [] -> None | hd::_ when (print_endline (string_of_t hd) ; p hd) -> Some i | _::tl -> aux (i+1) tl in aux 0 ;; (* step on the head of div, on the k-th argument, with n fresh vars *) let step k n p = let hd, _ = get_inert p.div in match hd with | C | L _ | A _ -> assert false | V var -> print_cmd "STEP" ("on " ^ string_of_t (V var) ^ " (on " ^ string_of_int (k+1) ^ "th)"); let p, t = (* apply fresh vars *) fold_nat (fun (p, t) _ -> let p, v = freshvar p in p, A(t, V (v + k + 1)) ) (p, V 0) n in let t = (* apply unused bound variables V_{k-1}..V_1 *) fold_nat (fun t m -> A(t, V (k-m+1))) t k in let t = mk_lams t (k+1) in (* make leading lambdas *) let subst = var, t in let divs, p = subst_in_problem subst p in divs, sanity p ;; let finish p = (* one-step version of eat *) let compute_max_arity = let rec aux n = function | A(t1,t2) -> max (aux (n+1) t1) (aux 0 t2) | L(t,g) -> List.fold_right (max ++ (aux 0)) (t::g) 0 | _ -> n in aux 0 in print_cmd "FINISH" ""; (* First, a step on the last argument of the divergent. Because of the sanity check, it will never be a constant term. *) let div_hd, div_nargs = get_inert p.div in let div_hd = match div_hd with V n -> n | _ -> assert false in let j = div_nargs - 1 in let arity = compute_max_arity p.conv in let n = 1 + arity + max (compute_max_lambdas_at div_hd j p.div) (compute_max_lambdas_at div_hd j p.conv) in let _, p = step j n p in (* Now, find first argument of div that is a variable never applied anywhere. It must exist because of some invariant, since we just did a step, and because of the arity of the divergent *) let div_hd, div_nargs = get_inert p.div in let div_hd = match div_hd with V n -> n | _ -> assert false in let rec aux m = function | A(t, V delta_var) -> if delta_var <> div_hd && get_subterms_with_head delta_var p.conv = [] then m, delta_var else aux (m-1) t | A(t,_) -> aux (m-1) t | _ -> assert false in let m, delta_var = aux div_nargs p.div in let _, p = subst_in_problem (delta_var, delta) p in let _, p = subst_in_problem (div_hd, mk_lams delta (m-1)) p in sanity p ;; let auto p = let rec aux p = match p.div with | L(div,g) -> (* case p.div is an abstraction *) let f l t = fst (subst' 0 true (0, C) t) :: l in (* the `fst' above is because we can ignore the garbage generated by the subst, because substituting C does not create redexes and thus no new garbage is activated *) let tms = List.fold_left f [] (div::g) in try_all "auto.L" (fun div -> aux {p with div}) tms | _ -> ( if is_constant p.div (* case p.div is rigid inert *) then try_all "auto.C" (fun div -> aux {p with div}) (args_of_inert p.div) else (* case p.div is flexible inert *) let hd, n_args = get_inert p.div in match hd with | C | L _ | A _ -> assert false | V hd_var -> let tms = get_subterms_with_head hd_var p.conv in if List.exists (fun t -> snd (get_inert t) >= n_args) tms then ( (* let tms = List.sort (fun t1 t2 -> - compare (snd (get_inert t1)) (snd (get_inert t2))) tms in *) try_all "no similar terms" (fun t -> let js = find_eta_difference p t in (* print_endline (String.concat ", " (List.map string_of_int js)); *) let js = List.rev js in try_all "no eta difference" (fun j -> let k = 1 + max (compute_max_lambdas_at hd_var j p.div) (compute_max_lambdas_at hd_var j p.conv) in let divs, p = step j k p in try_all "p.div" (fun div -> aux (sanity {p with div})) divs ) js) tms) else problem_fail (finish p) "Finish did not complete the problem" ) in try aux p with Done sigma -> sigma ;; let problem_of (label, div, convs, ps, var_names) = print_hline (); let rec aux lev = function | `Lam(_, t, g) -> L (aux (lev+1) t, List.map (aux (lev+1)) g) | `I (v, args) -> Listx.fold_left (fun x y -> fst (mk_app x (aux lev y))) (aux lev (`Var v)) args | `Var(v,_) -> if v >= lev && List.nth var_names (v-lev) = "C" then C else V v | `N _ | `Match _ -> assert false in assert (List.length ps = 0); let convs = List.rev convs in let conv = List.fold_left (fun x y -> fst (mk_app x (aux 0 (y :> Num.nf)))) C convs in let div = match div with | Some div -> aux 0 (div :> Num.nf) | None -> assert false in let varno = List.length var_names in {orig_freshno=varno; freshno=1+varno; div; conv; sigma=[]; label} ;; let solve p = let c = if String.length p.label > 0 then String.sub (p.label) 0 1 else "" in let module M = struct exception Okay end in try if eta_subterm p.div p.conv then raise (Unseparable "div is subterm of conv") else let p = sanity p (* initial sanity check *) in check p (auto p); raise M.Okay with | M.Okay -> if c = "?" then failwith "The problem succeeded, but was supposed to be unseparable" | e when c = "!" -> failwith ("The problem was supposed to be separable, but: "^Printexc.to_string e) | e -> print_endline ("The problem failed, as expected ("^Printexc.to_string e^")") ;; Problems.main (solve ++ problem_of); (* Example usage of interactive: *) (* let interactive div conv cmds = let p = problem_of div conv in try ( let p = List.fold_left (|>) p cmds in let rec f p cmds = let nth spl n = int_of_string (List.nth spl n) in let read_cmd () = let s = read_line () in let spl = Str.split (Str.regexp " +") s in s, let uno = List.hd spl in try if uno = "eat" then eat else if uno = "step" then step (nth spl 1) (nth spl 2) else failwith "Wrong input." with Failure s -> print_endline s; (fun x -> x) in let str, cmd = read_cmd () in let cmds = (" " ^ str ^ ";")::cmds in try let p = cmd p in f p cmds with | Done _ -> print_endline "Done! Commands history: "; List.iter print_endline (List.rev cmds) in f p [] ) with Done _ -> () ;; *) (* interactive "x y" "@ (x x) (y x) (y z)" [step 0 1; step 0 2; eat] ;; *)