open AST open Cminor module Mem = Driver.CminorMemory module Val = Mem.Value module LocalEnv = Map.Make(String) type local_env = Val.t LocalEnv.t type memory = Cminor.function_def Mem.memory let error_prefix = "Cminor interpret" let error s = Error.global_error error_prefix s let warning s = Error.warning error_prefix s let error_float () = error "float not supported." (* Helpers *) let value_of_address = List.hd let address_of_value v = [v] (* State of execution *) type continuation = Ct_stop | Ct_cont of statement*continuation | Ct_endblock of continuation | Ct_returnto of ident option*internal_function*Val.address*local_env*continuation type state = State_regular of internal_function*statement*continuation*Val.address*local_env*(function_def Mem.memory) | State_call of function_def*Val.t list*continuation*(function_def Mem.memory) | State_return of Val.t*continuation*(function_def Mem.memory) let string_of_local_env lenv = let f x v s = s ^ x ^ " = " ^ (Val.to_string v) ^ " " in LocalEnv.fold f lenv "" let string_of_expr = CminorPrinter.print_expression let string_of_args args = "(" ^ (MiscPottier.string_of_list ", " string_of_expr args) ^ ")" let rec string_of_statement = function | St_skip -> "skip" | St_assign (x, e) -> x ^ " = " ^ (string_of_expr e) | St_store (q, e1, e2) -> Printf.sprintf "%s[%s] = %s" (Memory.string_of_quantity q) (string_of_expr e1) (string_of_expr e2) | St_call (None, f, args, _) | St_tailcall (f, args, _) -> (string_of_expr f) ^ (string_of_args args) | St_call (Some x, f, args, _) -> x ^ " = " ^ (string_of_expr f) ^ (string_of_args args) | St_seq _ -> "sequence" | St_ifthenelse (e, _, _) -> "if (" ^ (string_of_expr e) ^ ")" | St_loop _ -> "loop" | St_block _ -> "block" | St_exit n -> "exit " ^ (string_of_int n) | St_switch (e, _, _) -> "switch (" ^ (string_of_expr e) ^ ")" | St_return None -> "return" | St_return (Some e) -> "return (" ^ (string_of_expr e) ^ ")" | St_label (lbl, _) -> "label " ^ lbl | St_goto lbl -> "goto " ^ lbl | St_cost (lbl, _) -> "cost " ^ lbl let print_state = function | State_regular (_, stmt, _, sp, lenv, mem) -> Printf.printf "Local environment:\n%s\n\nMemory:%s\nStack pointer: %s\n\nRegular state: %s\n\n%!" (string_of_local_env lenv) (Mem.to_string mem) (Val.to_string (value_of_address sp)) (string_of_statement stmt) | State_call (_, args, _, mem) -> Printf.printf "Memory:%s\nCall state\n\nArguments:\n%s\n\n%!" (Mem.to_string mem) (MiscPottier.string_of_list " " Val.to_string args) | State_return (v, _, mem) -> Printf.printf "Memory:%s\nReturn state: %s\n\n%!" (Mem.to_string mem) (Val.to_string v) (* Global and local environment management *) let init_local_env args params vars = let f_param lenv (x, _) v = LocalEnv.add x v lenv in let f_var lenv (x, _) = LocalEnv.add x Val.undef lenv in let lenv = List.fold_left2 f_param LocalEnv.empty params args in List.fold_left f_var lenv vars let find_fundef f mem = let addr = Mem.find_global mem f in Mem.find_fun_def mem addr (* Expression evaluation *) module Eval_op (M : Memory.S) = struct let concrete_stacksize = M.concrete_size let ext_fun_of_sign = function | AST.Signed -> M.Value.sign_ext | AST.Unsigned -> M.Value.zero_ext let cast_to_std t v = match t with | AST.Sig_int (size, sign) -> (ext_fun_of_sign sign) v size M.int_size | AST.Sig_float _ -> error_float () | AST.Sig_offset | AST.Sig_ptr -> v let cast_from_std t v = match t with | AST.Sig_int (size, _) -> (ext_fun_of_sign AST.Unsigned) v M.int_size size | AST.Sig_float _ -> error_float () | AST.Sig_offset | AST.Sig_ptr -> v let cst mem sp t = function | Cst_int i -> cast_to_std t (M.Value.of_int i) | Cst_float _ -> error_float () | Cst_addrsymbol id when M.mem_global mem id -> value_of_address (M.find_global mem id) | Cst_addrsymbol id -> error ("unknown global variable " ^ id ^ ".") | Cst_stack -> value_of_address sp | Cst_offset off -> M.Value.of_int (M.concrete_offset off) | Cst_sizeof t' -> cast_to_std t (M.Value.of_int (M.concrete_size t')) let fun_of_op1 = function | Op_cast ((from_size, from_sign), to_size) -> (fun v -> (ext_fun_of_sign from_sign) v from_size to_size) | Op_negint -> M.Value.negint | Op_notbool -> M.Value.notbool | Op_notint -> M.Value.negint | Op_id -> (fun v -> v) | Op_ptrofint | Op_intofptr -> error "conversion between integers and pointers not supported yet." let op1 ret_type t op v = cast_from_std ret_type ((fun_of_op1 op) (cast_to_std t v)) let fun_of_op2 = function | Op_add | Op_addp -> M.Value.add | Op_sub | Op_subp | Op_subpp -> M.Value.sub | Op_mul -> M.Value.mul | Op_div -> M.Value.div | Op_divu -> M.Value.divu | Op_mod -> M.Value.modulo | Op_modu -> M.Value.modulou | Op_and -> M.Value.and_op | Op_or -> M.Value.or_op | Op_xor -> M.Value.xor | Op_shl -> M.Value.shl | Op_shr -> M.Value.shr | Op_shru -> M.Value.shru | Op_cmp Cmp_eq | Op_cmpp Cmp_eq -> M.Value.cmp_eq | Op_cmp Cmp_ne | Op_cmpp Cmp_ne -> M.Value.cmp_ne | Op_cmp Cmp_gt | Op_cmpp Cmp_gt -> M.Value.cmp_gt | Op_cmp Cmp_ge | Op_cmpp Cmp_ge -> M.Value.cmp_ge | Op_cmp Cmp_lt | Op_cmpp Cmp_lt -> M.Value.cmp_lt | Op_cmp Cmp_le | Op_cmpp Cmp_le -> M.Value.cmp_le | Op_cmpu Cmp_eq -> M.Value.cmp_eq_u | Op_cmpu Cmp_ne -> M.Value.cmp_ne_u | Op_cmpu Cmp_gt -> M.Value.cmp_gt_u | Op_cmpu Cmp_ge -> M.Value.cmp_ge_u | Op_cmpu Cmp_lt -> M.Value.cmp_lt_u | Op_cmpu Cmp_le -> M.Value.cmp_le_u let op2 ret_type t1 t2 op2 v1 v2 = let v1 = cast_to_std t1 v1 in let v2 = cast_to_std t2 v2 in cast_from_std ret_type ((fun_of_op2 op2) v1 v2) end module Eval = Eval_op (Mem) let concrete_stacksize = Eval.concrete_stacksize let eval_constant = Eval.cst let eval_unop = Eval.op1 let eval_binop = Eval.op2 let type_of_expr (Cminor.Expr (_, t)) = t let rec eval_expression stack local_env memory (Cminor.Expr (ed, t)) = match ed with | Id x when LocalEnv.mem x local_env -> (LocalEnv.find x local_env,[]) | Id x -> error ("unknown local variable " ^ x ^ ".") | Cst(c) -> (eval_constant memory stack t c,[]) | Op1(op,arg) -> let (v,l) = eval_expression stack local_env memory arg in (eval_unop t (type_of_expr arg) op v,l) | Op2(op, arg1, arg2) -> let (v1,l1) = eval_expression stack local_env memory arg1 in let (v2,l2) = eval_expression stack local_env memory arg2 in (eval_binop t (type_of_expr arg1) (type_of_expr arg2) op v1 v2,l1@l2) | Mem(q,a) -> let (v,l) = eval_expression stack local_env memory a in (Mem.loadq memory q (address_of_value v),l) | Cond(a1,a2,a3) -> let (v1,l1) = eval_expression stack local_env memory a1 in if Val.is_true v1 then let (v2,l2) = eval_expression stack local_env memory a2 in (v2,l1@l2) else if Val.is_false v1 then let (v3,l3) = eval_expression stack local_env memory a3 in (v3,l1@l3) else error "undefined conditional value." | Exp_cost(lbl,e) -> let (v,l) = eval_expression stack local_env memory e in (v,l@[lbl]) let eval_exprlist sp lenv mem es = let f (vs, cost_lbls) e = let (v, cost_lbls') = eval_expression sp lenv mem e in (vs @ [v], cost_lbls @ cost_lbls') in List.fold_left f ([], []) es (* State transition *) let rec callcont = function Ct_stop -> Ct_stop | Ct_cont(_,k) -> callcont k | Ct_endblock(k) -> callcont k | Ct_returnto(a,b,c,d,e) -> Ct_returnto(a,b,c,d,e) let findlabel lbl st k = let rec fdlbl k = function St_skip -> None | St_assign(_,_) -> None | St_store(_,_,_) -> None | St_call(_,_,_,_) -> None | St_tailcall(_,_,_) -> None | St_seq(s1,s2) -> (match fdlbl (Ct_cont(s2,k)) s1 with None -> fdlbl k s2 | Some(v) -> Some(v) ) | St_ifthenelse(_,s1,s2) -> (match fdlbl k s1 with None -> fdlbl k s2 | Some(v) -> Some(v) ) | St_loop(s) -> fdlbl (Ct_cont(St_loop(s),k)) s | St_block(s) -> fdlbl (Ct_endblock(k)) s | St_exit(_) -> None | St_switch(_,_,_) -> None | St_return(_) -> None | St_label(l,s) when l = lbl -> Some((s,k)) | St_goto(_) -> None | St_cost (_,s) | St_label (_,s) -> fdlbl k s in match fdlbl k st with None -> assert false (*Wrong label*) | Some(v) -> v let call_state sigma e m f params cont = let (addr,l1) = eval_expression sigma e m f in let fun_def = Mem.find_fun_def m (address_of_value addr) in let (args,l2) = eval_exprlist sigma e m params in (State_call(fun_def,args,cont,m),l1@l2) let eval_stmt f k sigma e m s = match s, k with | St_skip,Ct_cont(s,k) -> (State_regular(f, s, k, sigma, e, m),[]) | St_skip,Ct_endblock(k) -> (State_regular(f, St_skip, k, sigma, e, m),[]) | St_skip, (Ct_returnto _ as k) -> (State_return (Val.undef,k,Mem.free m sigma),[]) | St_skip,Ct_stop -> (State_return (Val.undef,Ct_stop,Mem.free m sigma),[]) | St_assign(x,exp),_ -> let (v,l) = eval_expression sigma e m exp in let e = LocalEnv.add x v e in (State_regular(f, St_skip, k, sigma, e, m),l) | St_store(q,a1,a2),_ -> let (v1,l1) = eval_expression sigma e m a1 in let (v2,l2) = eval_expression sigma e m a2 in let m = Mem.storeq m q (address_of_value v1) v2 in (State_regular(f, St_skip, k, sigma, e, m),l1@l2) | St_call(xopt,f',params,_),_ -> call_state sigma e m f' params (Ct_returnto(xopt,f,sigma,e,k)) | St_tailcall(f',params,_),_ -> call_state sigma e m f' params (callcont k) | St_seq(s1,s2),_ -> (State_regular(f, s1, Ct_cont(s2, k), sigma, e, m),[]) | St_ifthenelse(exp,s1,s2),_ -> let (v,l) = eval_expression sigma e m exp in let next_stmt = if Val.is_true v then s1 else if Val.is_false v then s2 else error "undefined conditional value." in (State_regular(f,next_stmt,k,sigma,e,m),l) | St_loop(s),_ -> (State_regular(f,s,Ct_cont((St_loop s),k),sigma,e,m),[]) | St_block(s),_ -> (State_regular(f,s,(Ct_endblock k),sigma,e,m),[]) | St_exit(n),Ct_cont(s,k) -> (State_regular(f,(St_exit n),k,sigma,e,m),[]) | St_exit(0),Ct_endblock(k) -> (State_regular(f,St_skip,k,sigma,e,m),[]) | St_exit(n),Ct_endblock(k) -> (State_regular(f,(St_exit (n-1)),k,sigma,e,m),[]) | St_label(_,s),_ -> (State_regular(f,s,k,sigma,e,m),[]) | St_goto(lbl),_ -> let (s2,k2) = findlabel lbl f.f_body (callcont k) in (State_regular(f,s2,k2,sigma,e,m),[]) | St_switch(exp,lst,def),_ -> let (v,l) = eval_expression sigma e m exp in if Val.is_int v then try let i = Val.to_int v in let nb_exit = if List.mem_assoc i lst then List.assoc i lst else def in (State_regular(f, St_exit nb_exit,k, sigma, e, m),l) with _ -> error "int value too big." else error "undefined switch value." | St_return(None),_ -> (State_return (Val.undef,callcont k,Mem.free m sigma),[]) | St_return(Some(a)),_ -> let (v,l) = eval_expression sigma e m a in (State_return (v,callcont k,Mem.free m sigma),l) | St_cost(lbl,s),_ -> (State_regular(f,s,k,sigma,e,m),[lbl]) | _ -> error "state malformation." module InterpretExternal = Primitive.Interpret (Mem) let interpret_external k mem f args = let (mem', v) = match InterpretExternal.t mem f args with | (mem', InterpretExternal.V vs) -> let v = if List.length vs = 0 then Val.undef else List.hd vs in (mem', v) | (mem', InterpretExternal.A addr) -> (mem', value_of_address addr) in State_return (v, k, mem') let step_call vargs k m = function | F_int f -> let (m, sp) = Mem.alloc m (concrete_stacksize f.f_stacksize) in let lenv = init_local_env vargs f.f_params f.f_vars in State_regular(f,f.f_body,k,sp,lenv,m) | F_ext f -> interpret_external k m f.ef_tag vargs let step = function | State_regular(f,stmt,k,sp,e,m) -> eval_stmt f k sp e m stmt | State_call(fun_def,vargs,k,m) -> (step_call vargs k m fun_def,[]) | State_return(v,Ct_returnto(None,f,sigma,e,k),m) -> (State_regular(f,St_skip,k,sigma,e,m),[]) | State_return(v,Ct_returnto(Some x,f,sigma,e,k),m) -> let e = LocalEnv.add x v e in (State_regular(f,St_skip,k,sigma,e,m),[]) | _ -> error "state malformation." let init_mem prog = let f_var mem (x, size, init_datas) = Mem.add_var mem x size init_datas in let mem = List.fold_left f_var Mem.empty prog.vars in let f_fun_def mem (f, def) = Mem.add_fun_def mem f def in List.fold_left f_fun_def mem prog.functs let compute_result v = if Val.is_int v then IntValue.Int32.cast (Val.to_int_repr v) else IntValue.Int32.zero let rec exec debug trace (state, l) = let cost_labels = l @ trace in let print_and_return_result res = if debug then Printf.printf "Result = %s\n%!" (IntValue.Int32.to_string res) ; (res, cost_labels) in if debug then print_state state ; match state with | State_return(v,Ct_stop,_) -> (* Explicit return in main *) print_and_return_result (compute_result v) | State_regular(_,St_skip,Ct_stop,_,_,_) -> (* Implicit return in main *) print_and_return_result IntValue.Int32.zero | state -> exec debug cost_labels (step state) let interpret debug prog = Printf.printf "*** Cminor interpret ***\n%!" ; match prog.main with | None -> (IntValue.Int32.zero, []) | Some main -> let mem = init_mem prog in let first_state = (State_call (find_fundef main mem,[],Ct_stop,mem),[]) in exec debug [] first_state