]> matita.cs.unibo.it Git - helm.git/blobdiff - components/tactics/paramodulation/equality.ml
forces bash as Makefile SHELL
[helm.git] / components / tactics / paramodulation / equality.ml
index b6c3dc66a6625ec2e2ba92043e5108d6375f501d..b10dc818e80af3921c0385e4fac8ea38cef5cd20 100644 (file)
@@ -41,7 +41,7 @@ and proof =
   | Exact of Cic.term
   | Step of Subst.substitution * (rule * int*(Utils.pos*int)* Cic.term) 
             (* subst, (rule,eq1, eq2,predicate) *)  
-and goal_proof = (Utils.pos * int * Subst.substitution * Cic.term) list
+and goal_proof = (rule * Utils.pos * int * Subst.substitution * Cic.term) list
 ;;
 
 (* globals *)
@@ -75,21 +75,29 @@ let mk_tmp_equality (weight,(ty,l,r,o),m) =
 let open_equality (_,weight,proof,(ty,l,r,o),m,id) = 
   (weight,proof,(ty,l,r,o),m,id)
 
+let string_of_rule = function
+  | SuperpositionRight -> "SupR"
+  | SuperpositionLeft -> "SupL"
+  | Demodulation -> "Demod"
+;;
+
 let string_of_equality ?env eq =
   match env with
   | None ->
-      let w, _, (ty, left, right, o), _ , id = open_equality eq in
-      Printf.sprintf "Id: %d, Weight: %d, {%s}: %s =(%s) %s" 
+      let w, _, (ty, left, right, o), m , id = open_equality eq in
+      Printf.sprintf "Id: %d, Weight: %d, {%s}: %s =(%s) %s [%s]
               id w (CicPp.ppterm ty)
               (CicPp.ppterm left) 
               (Utils.string_of_comparison o) (CicPp.ppterm right)
+       (String.concat ", " (List.map (fun (i,_,_) -> string_of_int i) m))
   | Some (_, context, _) -> 
       let names = Utils.names_of_context context in
-      let w, _, (ty, left, right, o), _ , id = open_equality eq in
-      Printf.sprintf "Id: %d, Weight: %d, {%s}: %s =(%s) %s" 
+      let w, _, (ty, left, right, o), m , id = open_equality eq in
+      Printf.sprintf "Id: %d, Weight: %d, {%s}: %s =(%s) %s [%s]
               id w (CicPp.pp ty names)
               (CicPp.pp left names) (Utils.string_of_comparison o)
               (CicPp.pp right names)
+       (String.concat ", " (List.map (fun (i,_,_) -> string_of_int i) m))
 ;;
 
 let compare (_,_,_,s1,_,_) (_,_,_,s2,_,_) =
@@ -105,11 +113,6 @@ let proof_of_id id =
 
 
 let string_of_proof ?(names=[]) p gp = 
-  let str_of_rule = function
-    | SuperpositionRight -> "SupR"
-    | SuperpositionLeft -> "SupL"
-    | Demodulation -> "Demod"
-  in
   let str_of_pos = function
     | Utils.Left -> "left"
     | Utils.Right -> "right"
@@ -122,7 +125,7 @@ let string_of_proof ?(names=[]) p gp =
           prefix (CicPp.pp t names)
     | Step (subst,(rule,eq1,(pos,eq2),pred)) -> 
         Printf.sprintf "%s%s(%s|%d with %d dir %s pred %s))\n"
-          prefix (str_of_rule rule) (Subst.ppsubst ~names subst) eq1 eq2 (str_of_pos pos) 
+          prefix (string_of_rule rule) (Subst.ppsubst ~names subst) eq1 eq2 (str_of_pos pos) 
           (CicPp.pp pred names)^ 
         aux (margin+1) (Printf.sprintf "%d" eq1) (fst3 (proof_of_id eq1)) ^ 
         aux (margin+1) (Printf.sprintf "%d" eq2) (fst3 (proof_of_id eq2)) 
@@ -130,9 +133,9 @@ let string_of_proof ?(names=[]) p gp =
   aux 0 "" p ^ 
   String.concat "\n" 
     (List.map 
-      (fun (pos,i,s,t) -> 
+      (fun (r,pos,i,s,t) -> 
         (Printf.sprintf 
-          "GOAL: %s %d %s %s\n" 
+          "GOAL: %s %s %d %s %s\n" (string_of_rule r)
             (str_of_pos pos) i (Subst.ppsubst ~names s) (CicPp.pp t names)) ^ 
         aux 1 (Printf.sprintf "%d " i) (fst3 (proof_of_id i)))
       gp)
@@ -228,10 +231,13 @@ let canonical t =
                   remove_refl p1
               | _ -> Cic.Appl (List.map remove_refl args))
     | Cic.Appl l -> Cic.Appl (List.map remove_refl l)
+    | Cic.LetIn (name,bo,rest) ->
+        Cic.LetIn (name,remove_refl bo,remove_refl rest)
     | _ -> t
   in
   let rec canonical t =
     match t with
+      | Cic.LetIn(name,bo,rest) -> Cic.LetIn(name,canonical bo,canonical rest)
       | Cic.Appl (((Cic.Const(uri_sym,ens))::tl) as args)
           when LibraryObjects.is_sym_eq_URI uri_sym ->
           (match p_of_sym ens tl with
@@ -315,6 +321,9 @@ let contextualize uri ty left right t =
    * ctx is a term with an open (Rel 1). (Rel 1) is the empty context
    *)
     let rec aux uri ty left right ctx_d = function
+      | Cic.LetIn (name,body,rest) ->
+          (* we should go in body *)
+          Cic.LetIn (name,body,aux uri ty left right ctx_d rest)
       | Cic.Appl ((Cic.Const(uri_ind,ens))::tl)
         when LibraryObjects.is_eq_ind_URI uri_ind || 
              LibraryObjects.is_eq_ind_r_URI uri_ind ->
@@ -392,12 +401,15 @@ let contextualize_rewrites t ty =
   contextualize eq ty l r t
 ;;
   
-let build_proof_step subst p1 p2 pos l r pred =
-  let p1 = Subst.apply_subst subst p1 in
-  let p2 = Subst.apply_subst subst p2 in
-  let l  = Subst.apply_subst subst l in
-  let r  = Subst.apply_subst subst r in
-  let pred = Subst.apply_subst subst pred in
+let build_proof_step ?(sym=false) lift subst p1 p2 pos l r pred =
+  let p1 = Subst.apply_subst_lift lift subst p1 in
+  let p2 = Subst.apply_subst_lift lift subst p2 in
+  let l  = CicSubstitution.lift lift l in
+  let l = Subst.apply_subst_lift lift subst l in
+  let r  = CicSubstitution.lift lift r in
+  let r = Subst.apply_subst_lift lift subst r in
+  let pred = CicSubstitution.lift lift pred in
+  let pred = Subst.apply_subst_lift lift subst pred in
   let ty,body = 
     match pred with
       | Cic.Lambda (_,ty,body) -> ty,body 
@@ -406,27 +418,65 @@ let build_proof_step subst p1 p2 pos l r pred =
   let what, other = 
     if pos = Utils.Left then l,r else r,l
   in
+  let p =
     match pos with
       | Utils.Left ->
         mk_eq_ind (Utils.eq_ind_URI ()) ty what pred p1 other p2
       | Utils.Right ->
         mk_eq_ind (Utils.eq_ind_r_URI ()) ty what pred p1 other p2
+  in
+  if sym then
+    let uri,pl,pr = 
+      let eq,_,pl,pr = open_eq body in
+      LibraryObjects.sym_eq_URI ~eq, pl, pr
+    in
+    let l = CicSubstitution.subst other pl in
+    let r = CicSubstitution.subst other pr in
+    mk_sym uri ty l r p
+  else
+    p
 ;;
 
-let build_proof_term proof =
-  let rec aux = function
-     | Exact term -> term
-     | Step (subst,(_, id1, (pos,id2), pred)) ->
-         let p,_,_ = proof_of_id id1 in
-         let p1 = aux p in
-         let p,l,r = proof_of_id id2 in
-         let p2 = aux p in
-           build_proof_step subst p1 p2 pos l r pred
+let parametrize_proof p l r ty = 
+  let parameters = CicUtil.metas_of_term p 
+@ CicUtil.metas_of_term l 
+@ CicUtil.metas_of_term r
+in (* ?if they are under a lambda? *)
+  let parameters = 
+    HExtlib.list_uniq (List.sort Pervasives.compare parameters) 
   in
-   aux proof
+  let what = List.map (fun (i,l) -> Cic.Meta (i,l)) parameters in 
+  let with_what, lift_no = 
+    List.fold_right (fun _ (acc,n) -> ((Cic.Rel n)::acc),n+1) what ([],1) 
+  in
+  let p = CicSubstitution.lift (lift_no-1) p in
+  let p = 
+    ProofEngineReduction.replace_lifting
+    ~equality:(fun t1 t2 -> 
+      match t1,t2 with Cic.Meta (i,_),Cic.Meta(j,_) -> i=j | _ -> false) 
+    ~what ~with_what ~where:p
+  in
+  let ty_of_m _ = ty (*function 
+    | Cic.Meta (i,_) -> List.assoc i menv 
+    | _ -> assert false *)
+  in
+  let args, proof,_ = 
+    List.fold_left 
+      (fun (instance,p,n) m -> 
+        (instance@[m],
+        Cic.Lambda 
+          (Cic.Name ("x"^string_of_int n),
+          CicSubstitution.lift (lift_no - n - 1) (ty_of_m m),
+          p),
+        n+1)) 
+      ([Cic.Rel 1],p,1) 
+      what
+  in
+  let instance = match args with | [x] -> x | _ -> Cic.Appl args in
+  proof, instance
 ;;
 
-let wfo goalproof proof =
+let wfo goalproof proof id =
   let rec aux acc id =
     let p,_,_ = proof_of_id id in
     match p with
@@ -438,45 +488,167 @@ let wfo goalproof proof =
   in
   let acc = 
     match proof with
-      | Exact _ -> []
-      | Step (_,(_,id1, (_,id2), _)) -> aux (aux [] id1) id2
+      | Exact _ -> [id]
+      | Step (_,(_,id1, (_,id2), _)) -> aux (aux [id] id1) id2
   in 
-  List.fold_left (fun acc (_,id,_,_) -> aux acc id) acc goalproof
+  List.fold_left (fun acc (_,_,id,_,_) -> aux acc id) acc goalproof
 ;;
 
 let string_of_id names id = 
+  if id = 0 then "" else 
   try
-    let (_,p,(_,l,r,_),_,_) = open_equality (Hashtbl.find id_to_eq id) in
+    let (_,p,(_,l,r,_),m,_) = open_equality (Hashtbl.find id_to_eq id) in
     match p with
     | Exact t -> 
-        Printf.sprintf "%d = %s: %s = %s" id
+        Printf.sprintf "%d = %s: %s = %s [%s]" id
           (CicPp.pp t names) (CicPp.pp l names) (CicPp.pp r names)
+       (String.concat ", " (List.map (fun (i,_,_) -> string_of_int i) m))
     | Step (_,(step,id1, (_,id2), _) ) ->
-        Printf.sprintf "%6d: %s %6d %6d   %s = %s" id
-          (if step = SuperpositionRight then "SupR" else "Demo") 
+        Printf.sprintf "%6d: %s %6d %6d   %s = %s [%s]" id
+          (string_of_rule step)
           id1 id2 (CicPp.pp l names) (CicPp.pp r names)
+       (String.concat ", " (List.map (fun (i,_,_) -> string_of_int i) m))
   with
       Not_found -> assert false
 
-let pp_proof names goalproof proof =
-  String.concat "\n" (List.map (string_of_id names) (wfo goalproof proof)) ^ 
-  "\ngoal is demodulated with " ^ 
-    (String.concat " " 
-      ((List.map (fun (_,i,_,_) -> string_of_int i) goalproof)))
-;;
-
-let build_goal_proof l initial ty =
-  let proof = 
-   List.fold_left 
-   (fun  current_proof (pos,id,subst,pred) -> 
-      let p,l,r = proof_of_id id in
-      let p = build_proof_term p in
-      let pos = if pos = Utils.Left then Utils.Right else Utils.Left in
-        build_proof_step subst current_proof p pos l r pred)
-   initial l
+let pp_proof names goalproof proof subst id initial_goal =
+  prerr_endline ("AAAAA" ^ string_of_int id);
+  prerr_endline (String.concat "+" (List.map string_of_int (wfo goalproof proof
+  id)));
+  String.concat "\n" (List.map (string_of_id names) (wfo goalproof proof id)) ^ 
+  "\ngoal:\n   " ^ 
+    (String.concat "\n   " 
+      (fst (List.fold_right
+        (fun (r,pos,i,s,pred) (acc,g) -> 
+          let _,_,left,right = open_eq g in
+          let ty = 
+            match pos with 
+            | Utils.Left -> CicReduction.head_beta_reduce (Cic.Appl[pred;right])
+            | Utils.Right -> CicReduction.head_beta_reduce (Cic.Appl[pred;left])
+          in
+          let ty = Subst.apply_subst s ty in
+          ("("^ string_of_rule r ^ " " ^ string_of_int i^") -> "
+          ^ CicPp.pp ty names) :: acc,ty) goalproof ([],initial_goal)))) ^
+  "\nand then subsumed by " ^ string_of_int id ^ " when " ^ Subst.ppsubst subst
+;;
+
+(* returns the list of ids that should be factorized *)
+let get_duplicate_step_in_wfo l p =
+  let ol = List.rev l in
+  let h = Hashtbl.create 13 in
+  (* NOTE: here the n parameter is an approximation of the dependency 
+     between equations. To do things seriously we should maintain a 
+     dependency graph. This approximation is not perfect. *)
+  let add i n = 
+    let p,_,_ = proof_of_id i in 
+    match p with 
+    | Exact _ -> true
+    | _ -> 
+        try let (pos,no) = Hashtbl.find h i in Hashtbl.replace h i (pos,no+1);false
+        with Not_found -> Hashtbl.add h i (n,1);true
+  in
+  let rec aux n = function
+    | Exact _ -> n
+    | Step (_,(_,i1,(_,i2),_)) -> 
+       let go_on_1 = add i1 n in
+       let go_on_2 = add i2 n in
+        max 
+         (if go_on_1 then aux (n+1) (let p,_,_ = proof_of_id i1 in p) else n+1)
+         (if go_on_2 then aux (n+1) (let p,_,_ = proof_of_id i2 in p) else n+1)
+  in
+  let i = aux 0 p in 
+  let _ = 
+    List.fold_left 
+      (fun acc (_,_,id,_,_) -> aux acc (let p,_,_ = proof_of_id id in p))
+      i ol
+  in
+  (* now h is complete *)
+  let proofs = Hashtbl.fold (fun k (pos,count) acc->(k,pos,count)::acc) h [] in
+  let proofs = List.filter (fun (_,_,c) -> c > 1) proofs in
+  let proofs = 
+    List.sort (fun (_,c1,_) (_,c2,_) -> Pervasives.compare c2 c1) proofs 
+  in
+  List.map (fun (i,_,_) -> i) proofs
+;;
+
+let build_proof_term h lift proof =
+  let proof_of_id aux id =
+    let p,l,r = proof_of_id id in
+    try List.assoc id h,l,r with Not_found -> aux p, l, r
+  in
+  let rec aux = function
+     | Exact term -> CicSubstitution.lift lift term
+     | Step (subst,(_, id1, (pos,id2), pred)) ->
+         let p1,_,_ = proof_of_id aux id1 in
+         let p2,l,r = proof_of_id aux id2 in
+         let p =   build_proof_step lift subst p1 p2 pos l r pred in
+(*      let cond =  (not (List.mem 302 (Utils.metas_of_term p)) || id1 = 8 || id1 = 132) in
+          if not cond then
+            prerr_endline ("ERROR " ^ string_of_int id1 ^ " " ^ string_of_int id2);
+          assert cond;*)
+          p
   in
-  proof 
-  (*canonical (contextualize_rewrites proof ty)*)
+   aux proof
+;;
+
+let build_goal_proof l initial ty se =
+  let se = List.map (fun i -> Cic.Meta (i,[])) se in 
+  let lets = get_duplicate_step_in_wfo l initial in
+  let letsno = List.length lets in
+  let _,mty,_,_ = open_eq ty in
+  let lift_list l = List.map (fun (i,t) -> i,CicSubstitution.lift 1 t) l 
+  in
+  let lets,_,h = 
+    List.fold_left
+      (fun (acc,n,h) id -> 
+        let p,l,r = proof_of_id id in
+        let cic = build_proof_term h n p in
+        let real_cic,instance = 
+          parametrize_proof cic l r (CicSubstitution.lift n mty)
+        in
+        let h = (id, instance)::lift_list h in
+        acc@[id,real_cic],n+1,h) 
+      ([],0,[]) lets
+  in
+  let proof,se = 
+    let rec aux se current_proof = function
+      | [] -> current_proof,se
+      | (rule,pos,id,subst,pred)::tl ->
+          let p,l,r = proof_of_id id in
+           let p = build_proof_term h letsno p in
+           let pos = if pos = Utils.Left then Utils.Right else Utils.Left in
+           let sym,pred = 
+             match rule with 
+             | SuperpositionLeft when pos = Utils.Left -> 
+                 let pred = 
+                   match pred with 
+                   | Cic.Lambda (name,ty,Cic.Appl[eq;ty1;l;r]) ->
+                       Cic.Lambda (name,ty,Cic.Appl[eq;ty1;r;l])
+                   | _ -> assert false
+                 in
+                 true, pred
+             | _ -> false,pred 
+           in    
+           let proof = 
+             build_proof_step ~sym letsno subst current_proof p pos l r pred
+           in
+           let proof,se = aux se proof tl in
+           Subst.apply_subst_lift letsno subst proof,
+           List.map (fun x -> Subst.apply_subst_lift letsno subst x) se
+    in
+    aux se (build_proof_term h letsno initial) l
+  in
+  let n,proof = 
+    let initial = proof in
+    List.fold_right
+      (fun (id,cic) (n,p) -> 
+        n-1,
+        Cic.LetIn (
+          Cic.Name ("H"^string_of_int id),
+          cic, p))
+    lets (letsno-1,initial)
+  in
+  (*canonical (contextualize_rewrites proof (CicSubstitution.lift letsno ty))*)proof, se
 ;;
 
 let refl_proof ty term = 
@@ -486,46 +658,45 @@ let refl_proof ty term =
        ty; term]
 ;;
 
-let metas_of_proof p = 
-  Utils.metas_of_term (build_proof_term p)
+let metas_of_proof p =
+  let p = build_proof_term [] 0 p in
+  Utils.metas_of_term p
 ;;
 
-let relocate newmeta menv =
-  let subst, metasenv, newmeta = 
+let relocate newmeta menv to_be_relocated =
+  let subst, newmetasenv, newmeta = 
     List.fold_right 
-      (fun (i, context, ty) (subst, menv, maxmeta) ->         
-        let irl = [] (*
-         CicMkImplicit.identity_relocation_list_for_metavariable context *)
-        in
-        let newsubst = Subst.buildsubst i context (Cic.Meta(maxmeta,irl)) ty subst in
-        let newmeta = maxmeta, context, ty in
-        newsubst, newmeta::menv, maxmeta+1) 
-      menv (Subst.empty_subst, [], newmeta+1)
+      (fun i (subst, metasenv, maxmeta) ->         
+        let _,context,ty = CicUtil.lookup_meta i menv in
+        let irl = [] in
+        let newmeta = Cic.Meta(maxmeta,irl) in
+        let newsubst = Subst.buildsubst i context newmeta ty subst in
+        newsubst, (maxmeta,context,ty)::metasenv, maxmeta+1) 
+      to_be_relocated (Subst.empty_subst, [], newmeta+1)
   in
-  let metasenv = Subst.apply_subst_metasenv subst metasenv in
-  let subst = Subst.flatten_subst subst in
-  subst, metasenv, newmeta
+  let menv = Subst.apply_subst_metasenv subst menv @ newmetasenv in
+  subst, menv, newmeta
 
 
 let fix_metas newmeta eq = 
   let w, p, (ty, left, right, o), menv,_ = open_equality eq in
-  (* debug 
-  let _ , eq = 
-    fix_metas_old newmeta (w, p, (ty, left, right, o), menv, args) in
-  prerr_endline (string_of_equality eq); *)
-  let subst, metasenv, newmeta = relocate newmeta menv in
+  let to_be_relocated = 
+    HExtlib.list_uniq 
+      (List.sort Pervasives.compare 
+        (Utils.metas_of_term left @ Utils.metas_of_term right)) 
+  in
+  let subst, metasenv, newmeta = relocate newmeta menv to_be_relocated in
   let ty = Subst.apply_subst subst ty in
   let left = Subst.apply_subst subst left in
   let right = Subst.apply_subst subst right in
   let fix_proof = function
     | Exact p -> Exact (Subst.apply_subst subst p)
     | Step (s,(r,id1,(pos,id2),pred)) -> 
-        Step (Subst.concat_substs s subst,(r,id1,(pos,id2), pred))
+        Step (Subst.concat s subst,(r,id1,(pos,id2), pred))
   in
   let p = fix_proof p in
-  let eq = mk_equality (w, p, (ty, left, right, o), metasenv) in
-  (* debug prerr_endline (string_of_equality eq); *)
-  newmeta+1, eq  
+  let eq' = mk_equality (w, p, (ty, left, right, o), metasenv) in
+  newmeta+1, eq'  
 
 exception NotMetaConvertible;;