]> matita.cs.unibo.it Git - helm.git/blobdiff - helm/gTopLevel/fourierR.ml
bug in hypotesis parsing solved
[helm.git] / helm / gTopLevel / fourierR.ml
index bdba623190cc8ab47fa6b533f232ff5a26aec7a7..f6f44e950fe961ce3c7b4f6bb8dd771447b1c1a9 100644 (file)
@@ -80,7 +80,10 @@ prerr_endline ("#### Sintetizzato: " ^ CicPp.ppterm pred);
 
 
 let rewrite_simpl_tac ~term ~status =
- Tacticals.then_ ~start:(rewrite_tac ~term) ~continuation:ReductionTactics.simpl_tac ~status
+ Tacticals.then_ ~start:(rewrite_tac ~term)
+  ~continuation:
+   (ReductionTactics.simpl_tac ~also_in_hypotheses:false ~term:None)
+  ~status
 ;;
 
 (******************** THE FOURIER TACTIC ***********************)
@@ -143,11 +146,18 @@ let flin_coef f x =
        @param c a rational
        @return the new flin
 *)
-let flin_add f x c =                 
-    let cx = flin_coef f x in
-    Hashtbl.remove f.fhom x;
-    Hashtbl.add f.fhom x (rplus cx c);
-    f
+let flin_add f x c = 
+    match x with
+    Cic.Rel(n) ->(
+      let cx = flin_coef f x in
+      Hashtbl.remove f.fhom x;
+      Hashtbl.add f.fhom x (rplus cx c);
+      f)
+    |_->debug ("Internal error in Fourier! this is not a Rel "^CicPp.ppterm x^"\n");
+      let cx = flin_coef f x in
+      Hashtbl.remove f.fhom x;
+      Hashtbl.add f.fhom x (rplus cx c);
+      f
 ;;
 (**
        Adds c to f.fcste
@@ -186,7 +196,7 @@ let flin_minus f1 f2 =
 ;;
 
 (**
-       @return f times a
+       @return a times f
 *)
 let flin_emult a f =
     let f2 = flin_zero() in
@@ -245,7 +255,13 @@ let rec rational_of_term t =
 (* coq wrapper
 let rational_of_const = rational_of_term;;
 *)
-
+let fails f a =
+ try
+   let tmp = (f a) in
+   false
+ with 
+   _-> true
+ ;;
 
 let rec flin_of_term t =
        let fl_of_binop f l =
@@ -273,19 +289,59 @@ let rec flin_of_term t =
                let arg1 = (List.hd next) and
                    arg2 = (List.hd(List.tl next)) 
                in
-               try 
+               if fails rational_of_term arg1 
+                  then
+                  if fails rational_of_term arg2
+                     then
+                     ( (* prodotto tra 2 incognite ????? impossibile*)
+                     failwith "Sistemi lineari!!!!\n" 
+                     )
+                     else
+                     (
+                     match arg1 with
+                     Cic.Rel(n) -> (*trasformo al volo*)
+                                   (flin_add (flin_zero()) arg1 (rational_of_term arg2))
+                     |_-> (* test this *)
+                          let tmp = flin_of_term arg1 in
+                          flin_emult  (rational_of_term arg2) (tmp)
+                     )
+                  else
+                  if fails rational_of_term arg2
+                     then
+                     (
+                     match arg2 with
+                     Cic.Rel(n) -> (*trasformo al volo*)
+                                   (flin_add (flin_zero()) arg2 (rational_of_term arg1))
+                     |_-> (* test this *)
+                          let tmp = flin_of_term arg2 in
+                          flin_emult (rational_of_term arg1) (tmp)
+
+                     )
+                     else
+                     (  (*prodotto tra razionali*)
+                     (flin_add_cste (flin_zero()) (rmult (rational_of_term arg1) (rational_of_term arg2)))  
+                     )
+                       (*try
                        begin
-                       let a = rational_of_term arg1 in
+                       (*let a = rational_of_term arg1 in
+                       debug("ho fatto rational of term di "^CicPp.ppterm arg1^
+                        " e ho ottenuto "^string_of_int a.num^"/"^string_of_int a.den^"\n");*)
+                       let a = flin_of_term arg1  
                        try 
                                begin
                                let b = (rational_of_term arg2) in
+                               debug("ho fatto rational of term di "^CicPp.ppterm arg2^
+                                " e ho ottenuto "^string_of_int b.num^"/"^string_of_int b.den^"\n");
                                (flin_add_cste (flin_zero()) (rmult a b))
                                end
                        with 
-                               _ -> (flin_add (flin_zero()) arg2 a)
+                               _ -> debug ("ho fallito2 su "^CicPp.ppterm arg2^"\n");
+                                    (flin_add (flin_zero()) arg2 a)
                        end
                with 
-                       _-> (flin_add(flin_zero()) arg1 (rational_of_term arg2))
+                       _-> debug ("ho fallito1 su "^CicPp.ppterm arg1^"\n");
+                           (flin_add(flin_zero()) arg1 (rational_of_term arg2))
+                           *)
                end
            |"cic:/Coq/Reals/Rdefinitions/Rinv.con"->
               let a=(rational_of_term (List.hd next)) in
@@ -313,7 +369,7 @@ let rec flin_of_term t =
         |_-> assert false
        end
   |_-> assert false)
-  with _ -> flin_add (flin_zero()) t r1
+  with _ -> debug("eccezione = "^CicPp.ppterm t^"\n");flin_add (flin_zero()) t r1
 ;;
 
 (* coq wrapper
@@ -391,7 +447,7 @@ let ineq1_of_term (h,t) =
                 |_->assert false)(* match u *)
           | Cic.MutInd (u,i,o) ->
               (match UriManager.string_of_uri u with 
-                "cic:/Coq/Init/Logic_Type/eqT.con" ->  
+                "cic:/Coq/Init/Logic_Type/eqT.ind" ->  
                           let t0= arg1 in
                            let arg1= arg2 in
                            let arg2= List.hd(List.tl (List.tl next)) in
@@ -451,14 +507,17 @@ let fourier_lineq lineq1 =
                Hashtbl.iter (fun x c ->
                                 try (Hashtbl.find hvar x;())
                                 with _-> nvar:=(!nvar)+1;
-                                         Hashtbl.add hvar x (!nvar))
+                                         Hashtbl.add hvar x (!nvar);
+                                         debug("aggiungo una var "^
+                                          string_of_int !nvar^" per "^
+                                           CicPp.ppterm x^"\n"))
                             f.hflin.fhom)
              lineq1;
    (*print_hash hvar;*)
    debug("Il numero di incognite e' "^string_of_int (!nvar+1)^"\n");
    let sys= List.map (fun h->
                let v=Array.create ((!nvar)+1) r0 in
-               Hashtbl.iter (fun x c -> v.(Hashtbl.find hvar x)<-c) 
+               Hashtbl.iter (fun x c -> v.(Hashtbl.find hvar x) <- c) 
                   h.hflin.fhom;
                ((Array.to_list v)@[rop h.hflin.fcste],h.hstrict))
              lineq1 in
@@ -528,8 +587,8 @@ let _Rle_zero_1 = Cic.Const (UriManager.uri_of_string
  "cic:/Coq/fourier/Fourier_util/Rle_zero_1.con") [] ;;
 let _Rle_zero_pos_plus1 =  Cic.Const (UriManager.uri_of_string 
  "cic:/Coq/fourier/Fourier_util/Rle_zero_pos_plus1.con") [] ;;
-let _Rle_zero_zero = Cic.Const (UriManager.uri_of_string 
- "cic:/Coq/fourier/Fourier_util/Rle_zero_zero.con") [] ;;
+(*let _Rle_zero_zero = Cic.Const (UriManager.uri_of_string 
+ "cic:/Coq/fourier/Fourier_util/Rle_zero_zero.con") [] ;;*)
 let _Rlt = Cic.Const (UriManager.uri_of_string 
  "cic:/Coq/Reals/Rdefinitions/Rlt.con") [] ;;
 let _Rlt_mult_inv_pos = Cic.Const (UriManager.uri_of_string 
@@ -644,11 +703,11 @@ let tac_zero_infeq_pos gl (n,d) ~status =
  (*let cste = pf_parse_constr gl in*)
  debug("inizio tac_zero_infeq_pos\n");
  let tacn = ref 
-  (if n=0 then
+  (*(if n=0 then
     (PrimitiveTactics.apply_tac ~term:_Rle_zero_zero ) 
-   else
+   else*)
     (PrimitiveTactics.apply_tac ~term:_Rle_zero_1 )
 )
(* ) *)
   in
   let tacd=ref (PrimitiveTactics.apply_tac ~term:_Rlt_zero_1 ) in
   for i=1 to n-1 do 
@@ -714,7 +773,7 @@ let r =
      (*CSC: Patch to undo the over-simplification of RewriteSimpl *)
      Tacticals.then_
       ~start:
-        (ReductionTactics.fold_tac
+        (ReductionTactics.fold_tac ~also_in_hypotheses:false
           ~term:
             (Cic.Appl
               [_Rle ; _R0 ;
@@ -745,8 +804,10 @@ let apply_type_tac ~cast:t ~applist:al ~status:(proof,goal) =
   let metasenv' = (fresh_meta,context,t)::metasenv in
    let proof' = curi,metasenv',pbo,pty in
     let proof'',goals =
-     PrimitiveTactics.apply_tac ~term:(Cic.Appl ((Cic.Cast (Cic.Meta 
-      (fresh_meta,irl),t))::al)) ~status:(proof',goal)
+     PrimitiveTactics.apply_tac 
+      (*~term:(Cic.Appl ((Cic.Cast (Cic.Meta (fresh_meta,irl),t))::al)) (* ??? *)*)
+      ~term:(Cic.Appl ((Cic.Meta (fresh_meta,irl))::al)) (* ??? *)
+       ~status:(proof',goal)
     in
      proof'',fresh_meta::goals
 ;;
@@ -759,6 +820,9 @@ let my_cut ~term:c ~status:(proof,goal)=
   let curi,metasenv,pbo,pty = proof in
   let metano,context,ty = List.find (function (m,_,_) -> m=goal) metasenv in
 
+debug("my_cut di "^CicPp.ppterm c^"\n");
+
+
   let fresh_meta = ProofEngineHelpers.new_meta proof in
   let irl =
    ProofEngineHelpers.identity_relocation_list_for_metavariable context in
@@ -839,7 +903,7 @@ let rec strip_outer_cast c = match c with
   | _ -> c
 ;;
 
-let find_in_context id context =
+(*let find_in_context id context =
   let rec find_in_context_aux c n =
        match c with
        [] -> failwith (id^" not found in context")      
@@ -857,10 +921,26 @@ let rec filter_real_hyp context cont =
   [] -> []
   | Some(Cic.Name(h),Cic.Decl(t))::next -> (
                                let n = find_in_context h cont in
+                               debug("assegno "^string_of_int n^" a "^CicPp.ppterm t^"\n");
                        [(Cic.Rel(n),t)] @ filter_real_hyp next cont)
   | a::next -> debug("  no\n"); filter_real_hyp next cont
+;;*)
+let filter_real_hyp context _ =
+  let rec filter_aux context num =
+   match context with
+  [] -> []
+  | Some(Cic.Name(h),Cic.Decl(t))::next -> 
+               (
+               (*let n = find_in_context h cont in*)
+               debug("assegno "^string_of_int num^" a "^h^":"^CicPp.ppterm t^"\n");
+               [(Cic.Rel(num),t)] @ filter_aux next (num+1)
+               )
+  | a::next -> filter_aux next (num+1)
+  in
+  filter_aux context 1
 ;;
 
+
 (* lifts everithing at the conclusion level *) 
 let rec superlift c n=
   match c with
@@ -920,7 +1000,7 @@ let assumption_tac ~status:(proof,goal)=
 (* !!!!! fix !!!!!!!!!! *)
 let contradiction_tac ~status:(proof,goal)=
        Tacticals.then_ 
-               ~start:(PrimitiveTactics.intros_tac ~name:"bo?" )
+               ~start:(PrimitiveTactics.intros_tac ~name:"bo?" ) (*inutile sia questo che quello prima  della chiamata*)
                ~continuation:(Tacticals.then_ 
                        ~start:(Ring.elim_type_tac ~term:_False) 
                        ~continuation:(assumption_tac))
@@ -1135,7 +1215,7 @@ theoreme,so let's parse our thesis *)
        in
        tac:=(Tacticals.thens 
          ~start:(my_cut ~term:ineq) 
-         ~continuations:[Tacticals.then_  
+         ~continuations:[(*Tacticals.id_tac;Tacticals.id_tac*)(**)Tacticals.then_  
           ~start:(fun ~status:(proof,goal as status) ->
              let curi,metasenv,pbo,pty = proof in
              let metano,context,ty = List.find (function (m,_,_) -> m=goal) 
@@ -1148,6 +1228,7 @@ theoreme,so let's parse our thesis *)
             ~continuation:(Tacticals.thens 
               ~start:( 
                 fun ~status ->
+                debug("t1 ="^CicPp.ppterm !t1 ^"t2 ="^CicPp.ppterm !t2 ^"tc="^ CicPp.ppterm tc^"\n");
                 let r = equality_replace (Cic.Appl [_Rminus;!t2;!t1] ) tc 
                  ~status
                 in
@@ -1163,25 +1244,6 @@ theoreme,so let's parse our thesis *)
                   r)
                 ~continuations:
                    [PrimitiveTactics.apply_tac ~term:_Rinv_R1
-(* CSC: Il nostro goal e' 1^-1 = 1 e non 1 = 1^-1. Quindi non c'e' bisogno
-   di applicare sym_eqT. Perche' in Coq il goal e' al contrario? Forse i
-   parametri della equality_replace vengono passati al contrario? Oppure la
-   tattica usa i parametri al contrario?
-   CODICE NEL COMMENTO NON PORTATO. ORA ESISTE ANCHE LA TATTICA symmetry_tac
-                ~continuations:[Tacticals.then_ 
-                  ~start:(
-                    fun ~status:(proof,goal as status) ->
-                    debug("ECCOCI\n");
-                     let curi,metasenv,pbo,pty = proof in
-                    let metano,context,ty = List.find (function (m,_,_) -> m=
-                     goal) metasenv in
-                     debug("ty = "^CicPp.ppterm ty^"\n");
-                    let r = PrimitiveTactics.apply_tac ~term:_sym_eqT 
-                     ~status in
-                    debug("fine ECCOCI\n");
-                    r)
-                  ~continuation:(PrimitiveTactics.apply_tac ~term:_Rinv_R1)
-*)
                 ;Tacticals.try_tactics 
                   ~tactics:[ "ring", (fun ~status -> 
                                        debug("begin RING\n");
@@ -1190,7 +1252,8 @@ theoreme,so let's parse our thesis *)
                                        r)
                        ; "id", Tacticals.id_tac] 
                 ])
-              ;Tacticals.then_ 
+              ;(*Tacticals.id_tac*)
+               Tacticals.then_ 
                 ~start:
                  (
                  fun ~status:(proof,goal as status) ->
@@ -1201,28 +1264,25 @@ theoreme,so let's parse our thesis *)
                   let w1 = 
                     debug("qui c'e' gia' l'or "^CicPp.ppterm ty^"\n");
                     (match ty with
-                    (* Fix: aspetta mail di Claudio per capire cosa comporta anonimous*)
                     Cic.Prod (Cic.Anonymous,a,b) -> (Cic.Appl [_not;a])
                     |_ -> assert false)
                   in
                   let r = PrimitiveTactics.change_tac ~what:ty ~with_what:w1 ~status in
                   debug("fine MY_CHNGE\n");
                   r
+                  
                  ) 
                 ~continuation:(*PORTINGTacticals.id_tac*)tac2]))
         ;(*Tacticals.id_tac*)!tac1]);(*end tac:=*)
-       tac:=(Tacticals.thens 
-         ~start:(PrimitiveTactics.cut_tac ~term:_False)
-        ~continuations:[Tacticals.then_ 
-          ~start:(PrimitiveTactics.intros_tac ~name:"??")
-          ~continuation:contradiction_tac
-        ;!tac])
-
 
     |_-> assert false)(*match (!lutil) *)
   |_-> assert false); (*match res*)
   debug ("finalmente applico tac\n");
-  (!tac ~status:(proof,goal)) 
+  (
+  let r = !tac ~status:(proof,goal) in
+  debug("\n\n]]]]]]]]]]]]]]]]]) That's all folks ([[[[[[[[[[[[[[[[[[[\n\n");r
+  
+  ) 
 ;;
 
 let fourier_tac ~status:(proof,goal) = fourier ~status:(proof,goal);;