]> matita.cs.unibo.it Git - helm.git/blobdiff - helm/matita/library/nat/factorization.ma
- renamed ocaml/ to components/
[helm.git] / helm / matita / library / nat / factorization.ma
diff --git a/helm/matita/library/nat/factorization.ma b/helm/matita/library/nat/factorization.ma
deleted file mode 100644 (file)
index 37b5ea1..0000000
+++ /dev/null
@@ -1,619 +0,0 @@
-(**************************************************************************)
-(*       ___                                                               *)
-(*      ||M||                                                             *)
-(*      ||A||       A project by Andrea Asperti                           *)
-(*      ||T||                                                             *)
-(*      ||I||       Developers:                                           *)
-(*      ||T||       A.Asperti, C.Sacerdoti Coen,                          *)
-(*      ||A||       E.Tassi, S.Zacchiroli                                 *)
-(*      \   /                                                             *)
-(*       \ /        Matita is distributed under the terms of the          *)
-(*        v         GNU Lesser General Public License Version 2.1         *)
-(*                                                                        *)
-(**************************************************************************)
-
-set "baseuri" "cic:/matita/nat/factorization".
-
-include "nat/ord.ma".
-include "nat/gcd.ma".
-include "nat/nth_prime.ma".
-
-(* the following factorization algorithm looks for the largest prime
-   factor. *)
-definition max_prime_factor \def \lambda n:nat.
-(max n (\lambda p:nat.eqb (n \mod (nth_prime p)) O)).
-
-(* max_prime_factor is indeed a factor *)
-theorem divides_max_prime_factor_n:
-  \forall n:nat. (S O) < n
-  \to nth_prime (max_prime_factor n) \divides n.
-intros; apply divides_b_true_to_divides;
-[ apply lt_O_nth_prime_n;
-| apply (f_max_true  (\lambda p:nat.eqb (n \mod (nth_prime p)) O) n);
-  cut (\exists i. nth_prime i = smallest_factor n);
-  [ elim Hcut.
-    apply (ex_intro nat ? a);
-    split;
-    [ apply (trans_le a (nth_prime a));
-      [ apply le_n_fn;
-        exact lt_nth_prime_n_nth_prime_Sn;
-      | rewrite > H1;
-        apply le_smallest_factor_n; ]
-    | rewrite > H1;
-      change with (divides_b (smallest_factor n) n = true);
-      apply divides_to_divides_b_true;
-      [ apply (trans_lt ? (S O));
-        [ unfold lt; apply le_n;
-        | apply lt_SO_smallest_factor; assumption; ]
-      | apply divides_smallest_factor_n;
-        apply (trans_lt ? (S O));
-        [ unfold lt; apply le_n;
-        | assumption; ] ] ]
-  | apply prime_to_nth_prime;
-    apply prime_smallest_factor_n;
-    assumption; ] ]
-qed.
-
-theorem divides_to_max_prime_factor : \forall n,m. (S O) < n \to O < m \to n \divides m \to 
-max_prime_factor n \le max_prime_factor m.
-intros.change with
-((max n (\lambda p:nat.eqb (n \mod (nth_prime p)) O)) \le
-(max m (\lambda p:nat.eqb (m \mod (nth_prime p)) O))).
-apply f_m_to_le_max.
-apply (trans_le ? n).
-apply le_max_n.apply divides_to_le.assumption.assumption.
-change with (divides_b (nth_prime (max_prime_factor n)) m = true).
-apply divides_to_divides_b_true.
-cut (prime (nth_prime (max_prime_factor n))).
-apply lt_O_nth_prime_n.apply prime_nth_prime.
-cut (nth_prime (max_prime_factor n) \divides n).
-apply (transitive_divides ? n).
-apply divides_max_prime_factor_n.
-assumption.assumption.
-apply divides_b_true_to_divides.
-apply lt_O_nth_prime_n.
-apply divides_to_divides_b_true.
-apply lt_O_nth_prime_n.
-apply divides_max_prime_factor_n.
-assumption.
-qed.
-
-theorem p_ord_to_lt_max_prime_factor: \forall n,p,q,r. O < n \to
-p = max_prime_factor n \to 
-(pair nat nat q r) = p_ord n (nth_prime p) \to
-(S O) < r \to max_prime_factor r < p.
-intros.
-rewrite > H1.
-cut (max_prime_factor r \lt max_prime_factor n \lor
-    max_prime_factor r = max_prime_factor n).
-elim Hcut.assumption.
-absurd (nth_prime (max_prime_factor n) \divides r).
-rewrite < H4.
-apply divides_max_prime_factor_n.
-assumption.
-change with (nth_prime (max_prime_factor n) \divides r \to False).
-intro.
-cut (r \mod (nth_prime (max_prime_factor n)) \neq O).
-apply Hcut1.apply divides_to_mod_O.
-apply lt_O_nth_prime_n.assumption.
-apply (p_ord_aux_to_not_mod_O n n ? q r).
-apply lt_SO_nth_prime_n.assumption.
-apply le_n.
-rewrite < H1.assumption.
-apply (le_to_or_lt_eq (max_prime_factor r)  (max_prime_factor n)).
-apply divides_to_max_prime_factor.
-assumption.assumption.
-apply (witness r n ((nth_prime p) \sup q)).
-rewrite < sym_times.
-apply (p_ord_aux_to_exp n n ? q r).
-apply lt_O_nth_prime_n.assumption.
-qed.
-
-theorem p_ord_to_lt_max_prime_factor1: \forall n,p,q,r. O < n \to
-max_prime_factor n \le p \to 
-(pair nat nat q r) = p_ord n (nth_prime p) \to
-(S O) < r \to max_prime_factor r < p.
-intros.
-cut (max_prime_factor n < p \lor max_prime_factor n = p).
-elim Hcut.apply (le_to_lt_to_lt ? (max_prime_factor n)).
-apply divides_to_max_prime_factor.assumption.assumption.
-apply (witness r n ((nth_prime p) \sup q)).
-rewrite > sym_times.
-apply (p_ord_aux_to_exp n n).
-apply lt_O_nth_prime_n.
-assumption.assumption.
-apply (p_ord_to_lt_max_prime_factor n ? q).
-assumption.apply sym_eq.assumption.assumption.assumption.
-apply (le_to_or_lt_eq ? p H1).
-qed.
-
-(* datatypes and functions *)
-
-inductive nat_fact : Set \def
-    nf_last : nat \to nat_fact   
-  | nf_cons : nat \to nat_fact \to nat_fact.
-
-inductive nat_fact_all : Set \def
-    nfa_zero : nat_fact_all
-  | nfa_one : nat_fact_all
-  | nfa_proper : nat_fact \to nat_fact_all.
-
-let rec factorize_aux p n acc \def
-  match p with 
-  [ O \Rightarrow acc
-  | (S p1) \Rightarrow 
-    match p_ord n (nth_prime p1) with
-    [ (pair q r) \Rightarrow 
-      factorize_aux p1 r (nf_cons q acc)]].
-  
-definition factorize : nat \to nat_fact_all \def \lambda n:nat.
-  match n with
-    [ O \Rightarrow nfa_zero
-    | (S n1) \Rightarrow
-      match n1 with
-      [ O \Rightarrow nfa_one
-    | (S n2) \Rightarrow 
-      let p \def (max (S(S n2)) (\lambda p:nat.eqb ((S(S n2)) \mod (nth_prime p)) O)) in
-      match p_ord (S(S n2)) (nth_prime p) with
-      [ (pair q r) \Rightarrow 
-           nfa_proper (factorize_aux p r (nf_last (pred q)))]]].
-           
-let rec defactorize_aux f i \def
-  match f with
-  [ (nf_last n) \Rightarrow (nth_prime i) \sup (S n)
-  | (nf_cons n g) \Rightarrow 
-      (nth_prime i) \sup n *(defactorize_aux g (S i))].
-      
-definition defactorize : nat_fact_all \to nat \def
-\lambda f : nat_fact_all. 
-match f with 
-[ nfa_zero \Rightarrow O
-| nfa_one \Rightarrow (S O)
-| (nfa_proper g) \Rightarrow defactorize_aux g O]. 
-
-theorem lt_O_defactorize_aux: \forall f:nat_fact.\forall i:nat.
-O < defactorize_aux f i.
-intro.elim f.simplify.unfold lt. 
-rewrite > times_n_SO.
-apply le_times.
-change with (O < nth_prime i).
-apply lt_O_nth_prime_n.
-change with (O < exp (nth_prime i) n).
-apply lt_O_exp.
-apply lt_O_nth_prime_n.
-simplify.unfold lt.
-rewrite > times_n_SO.
-apply le_times.
-change with (O < exp (nth_prime i) n).
-apply lt_O_exp.
-apply lt_O_nth_prime_n.
-change with (O < defactorize_aux n1 (S i)).
-apply H.
-qed.
-
-theorem lt_SO_defactorize_aux: \forall f:nat_fact.\forall i:nat.
-S O < defactorize_aux f i.
-intro.elim f.simplify.unfold lt.
-rewrite > times_n_SO.
-apply le_times.
-change with (S O < nth_prime i).
-apply lt_SO_nth_prime_n.
-change with (O < exp (nth_prime i) n).
-apply lt_O_exp.
-apply lt_O_nth_prime_n.
-simplify.unfold lt.
-rewrite > times_n_SO.
-rewrite > sym_times.
-apply le_times.
-change with (O < exp (nth_prime i) n).
-apply lt_O_exp.
-apply lt_O_nth_prime_n.
-change with (S O < defactorize_aux n1 (S i)).
-apply H.
-qed.
-
-theorem defactorize_aux_factorize_aux : 
-\forall p,n:nat.\forall acc:nat_fact.O < n \to
-((n=(S O) \land p=O) \lor max_prime_factor n < p) \to
-defactorize_aux (factorize_aux p n acc) O = n*(defactorize_aux acc p).
-intro.elim p.simplify.
-elim H1.elim H2.rewrite > H3.
-rewrite > sym_times. apply times_n_SO.
-apply False_ind.apply (not_le_Sn_O (max_prime_factor n) H2).
-simplify.
-(* generalizing the goal: I guess there exists a better way *)
-cut (\forall q,r.(pair nat nat q r) = (p_ord_aux n1 n1 (nth_prime n)) \to
-defactorize_aux match (p_ord_aux n1 n1 (nth_prime n)) with
-[(pair q r)  \Rightarrow (factorize_aux n r (nf_cons q acc))] O =
-n1*defactorize_aux acc (S n)).
-apply (Hcut (fst ? ? (p_ord_aux n1 n1 (nth_prime n)))
-(snd ? ? (p_ord_aux n1 n1 (nth_prime n)))).
-apply sym_eq.apply eq_pair_fst_snd.
-intros.
-rewrite < H3.
-simplify.
-cut (n1 = r * (nth_prime n) \sup q).
-rewrite > H.
-simplify.rewrite < assoc_times.
-rewrite < Hcut.reflexivity.
-cut (O < r \lor O = r).
-elim Hcut1.assumption.absurd (n1 = O).
-rewrite > Hcut.rewrite < H4.reflexivity.
-unfold Not. intro.apply (not_le_Sn_O O).
-rewrite < H5 in \vdash (? ? %).assumption.
-apply le_to_or_lt_eq.apply le_O_n.
-cut ((S O) < r \lor (S O) \nlt r).
-elim Hcut1.
-right.
-apply (p_ord_to_lt_max_prime_factor1 n1 ? q r).
-assumption.elim H2.
-elim H5.
-apply False_ind.
-apply (not_eq_O_S n).apply sym_eq.assumption.
-apply le_S_S_to_le.
-exact H5.
-assumption.assumption.
-cut (r=(S O)).
-apply (nat_case n).
-left.split.assumption.reflexivity.
-intro.right.rewrite > Hcut2.
-simplify.unfold lt.apply le_S_S.apply le_O_n.
-cut (r \lt (S O) \or r=(S O)).
-elim Hcut2.absurd (O=r).
-apply le_n_O_to_eq.apply le_S_S_to_le.exact H5.
-unfold Not.intro.
-cut (O=n1).
-apply (not_le_Sn_O O).
-rewrite > Hcut3 in \vdash (? ? %).
-assumption.rewrite > Hcut. 
-rewrite < H6.reflexivity.
-assumption.
-apply (le_to_or_lt_eq r (S O)).
-apply not_lt_to_le.assumption.
-apply (decidable_lt (S O) r).
-rewrite > sym_times.
-apply (p_ord_aux_to_exp n1 n1).
-apply lt_O_nth_prime_n.assumption.
-qed.
-
-theorem defactorize_factorize: \forall n:nat.defactorize (factorize n) = n.
-intro.
-apply (nat_case n).reflexivity.
-intro.apply (nat_case m).reflexivity.
-intro.change with  
-(let p \def (max (S(S m1)) (\lambda p:nat.eqb ((S(S m1)) \mod (nth_prime p)) O)) in
-defactorize (match p_ord (S(S m1)) (nth_prime p) with
-[ (pair q r) \Rightarrow 
-   nfa_proper (factorize_aux p r (nf_last (pred q)))])=(S(S m1))).
-intro.
-(* generalizing the goal; find a better way *)
-cut (\forall q,r.(pair nat nat q r) = (p_ord (S(S m1)) (nth_prime p)) \to
-defactorize (match p_ord (S(S m1)) (nth_prime p) with
-[ (pair q r) \Rightarrow 
-   nfa_proper (factorize_aux p r (nf_last (pred q)))])=(S(S m1))).
-apply (Hcut (fst ? ? (p_ord (S(S m1)) (nth_prime p)))
-(snd ? ? (p_ord (S(S m1)) (nth_prime p)))).
-apply sym_eq.apply eq_pair_fst_snd.
-intros.
-rewrite < H.
-change with 
-(defactorize_aux (factorize_aux p r (nf_last (pred q))) O = (S(S m1))).
-cut ((S(S m1)) = (nth_prime p) \sup q *r).
-cut (O<r).
-rewrite > defactorize_aux_factorize_aux.
-change with (r*(nth_prime p) \sup (S (pred q)) = (S(S m1))).
-cut ((S (pred q)) = q).
-rewrite > Hcut2.
-rewrite > sym_times.
-apply sym_eq.
-apply (p_ord_aux_to_exp (S(S m1))).
-apply lt_O_nth_prime_n.
-assumption.
-(* O < q *)
-apply sym_eq. apply S_pred.
-cut (O < q \lor O = q).
-elim Hcut2.assumption.
-absurd (nth_prime p \divides S (S m1)).
-apply (divides_max_prime_factor_n (S (S m1))).
-unfold lt.apply le_S_S.apply le_S_S. apply le_O_n.
-cut ((S(S m1)) = r).
-rewrite > Hcut3 in \vdash (? (? ? %)).
-change with (nth_prime p \divides r \to False).
-intro.
-apply (p_ord_aux_to_not_mod_O (S(S m1)) (S(S m1)) (nth_prime p) q r).
-apply lt_SO_nth_prime_n.
-unfold lt.apply le_S_S.apply le_O_n.apply le_n.
-assumption.
-apply divides_to_mod_O.apply lt_O_nth_prime_n.assumption.
-rewrite > times_n_SO in \vdash (? ? ? %).
-rewrite < sym_times.
-rewrite > (exp_n_O (nth_prime p)).
-rewrite > H1 in \vdash (? ? ? (? (? ? %) ?)).
-assumption.
-apply le_to_or_lt_eq.apply le_O_n.assumption.
-(* e adesso l'ultimo goal. TASSI: che ora non e' piu' l'ultimo :P *)
-cut ((S O) < r \lor S O \nlt r).
-elim Hcut2.
-right. 
-apply (p_ord_to_lt_max_prime_factor1 (S(S m1)) ? q r).
-unfold lt.apply le_S_S. apply le_O_n.
-apply le_n.
-assumption.assumption.
-cut (r=(S O)).
-apply (nat_case p).
-left.split.assumption.reflexivity.
-intro.right.rewrite > Hcut3.
-simplify.unfold lt.apply le_S_S.apply le_O_n.
-cut (r \lt (S O) \or r=(S O)).
-elim Hcut3.absurd (O=r).
-apply le_n_O_to_eq.apply le_S_S_to_le.exact H2.
-unfold Not.intro.
-apply (not_le_Sn_O O).
-rewrite > H3 in \vdash (? ? %).assumption.assumption.
-apply (le_to_or_lt_eq r (S O)).
-apply not_lt_to_le.assumption.
-apply (decidable_lt (S O) r).
-(* O < r *)
-cut (O < r \lor O = r).
-elim Hcut1.assumption. 
-apply False_ind.
-apply (not_eq_O_S (S m1)).
-rewrite > Hcut.rewrite < H1.rewrite < times_n_O.reflexivity.
-apply le_to_or_lt_eq.apply le_O_n.
-(* prova del cut *)
-goal 20.
-apply (p_ord_aux_to_exp (S(S m1))).
-apply lt_O_nth_prime_n.
-assumption.
-(* fine prova cut *)
-qed.
-
-let rec max_p f \def
-match f with
-[ (nf_last n) \Rightarrow O
-| (nf_cons n g) \Rightarrow S (max_p g)].
-
-let rec max_p_exponent f \def
-match f with
-[ (nf_last n) \Rightarrow n
-| (nf_cons n g) \Rightarrow max_p_exponent g].
-
-theorem divides_max_p_defactorize: \forall f:nat_fact.\forall i:nat. 
-nth_prime ((max_p f)+i) \divides defactorize_aux f i.
-intro.
-elim f.simplify.apply (witness ? ? ((nth_prime i) \sup n)).
-reflexivity.
-change with 
-(nth_prime (S(max_p n1)+i) \divides
-(nth_prime i) \sup n *(defactorize_aux n1 (S i))).
-elim (H (S i)).
-rewrite > H1.
-rewrite < sym_times.
-rewrite > assoc_times.
-rewrite < plus_n_Sm.
-apply (witness ? ? (n2* (nth_prime i) \sup n)).
-reflexivity.
-qed.
-
-theorem divides_exp_to_divides: 
-\forall p,n,m:nat. prime p \to 
-p \divides n \sup m \to p \divides n.
-intros 3.elim m.simplify in H1.
-apply (transitive_divides p (S O)).assumption.
-apply divides_SO_n.
-cut (p \divides n \lor p \divides n \sup n1).
-elim Hcut.assumption.
-apply H.assumption.assumption.
-apply divides_times_to_divides.assumption.
-exact H2.
-qed.
-
-theorem divides_exp_to_eq: 
-\forall p,q,m:nat. prime p \to prime q \to
-p \divides q \sup m \to p = q.
-intros.
-unfold prime in H1.
-elim H1.apply H4.
-apply (divides_exp_to_divides p q m).
-assumption.assumption.
-unfold prime in H.elim H.assumption.
-qed.
-
-theorem  not_divides_defactorize_aux: \forall f:nat_fact. \forall i,j:nat.
-i < j \to nth_prime i \ndivides defactorize_aux f j.
-intro.elim f.
-change with
-(nth_prime i \divides (nth_prime j) \sup (S n) \to False).
-intro.absurd ((nth_prime i) = (nth_prime j)).
-apply (divides_exp_to_eq ? ? (S n)).
-apply prime_nth_prime.apply prime_nth_prime.
-assumption.
-change with ((nth_prime i) = (nth_prime j) \to False).
-intro.cut (i = j).
-apply (not_le_Sn_n i).rewrite > Hcut in \vdash (? ? %).assumption.
-apply (injective_nth_prime ? ? H2).
-change with 
-(nth_prime i \divides (nth_prime j) \sup n *(defactorize_aux n1 (S j)) \to False).
-intro.
-cut (nth_prime i \divides (nth_prime j) \sup n
-\lor nth_prime i \divides defactorize_aux n1 (S j)).
-elim Hcut.
-absurd ((nth_prime i) = (nth_prime j)).
-apply (divides_exp_to_eq ? ? n).
-apply prime_nth_prime.apply prime_nth_prime.
-assumption.
-change with ((nth_prime i) = (nth_prime j) \to False).
-intro.
-cut (i = j).
-apply (not_le_Sn_n i).rewrite > Hcut1 in \vdash (? ? %).assumption.
-apply (injective_nth_prime ? ? H4).
-apply (H i (S j)).
-apply (trans_lt ? j).assumption.unfold lt.apply le_n.
-assumption.
-apply divides_times_to_divides.
-apply prime_nth_prime.assumption.
-qed.
-
-lemma not_eq_nf_last_nf_cons: \forall g:nat_fact.\forall n,m,i:nat.
-\lnot (defactorize_aux (nf_last n) i= defactorize_aux (nf_cons m g) i).
-intros.
-change with 
-(exp (nth_prime i) (S n) = defactorize_aux (nf_cons m g) i \to False).
-intro.
-cut (S(max_p g)+i= i).
-apply (not_le_Sn_n i).
-rewrite < Hcut in \vdash (? ? %).
-simplify.apply le_S_S.
-apply le_plus_n.
-apply injective_nth_prime.
-(* uffa, perche' semplifica ? *)
-change with (nth_prime (S(max_p g)+i)= nth_prime i).
-apply (divides_exp_to_eq ? ? (S n)).
-apply prime_nth_prime.apply prime_nth_prime.
-rewrite > H.
-change with (divides (nth_prime ((max_p (nf_cons m g))+i)) 
-(defactorize_aux (nf_cons m g) i)).
-apply divides_max_p_defactorize.
-qed.
-
-lemma not_eq_nf_cons_O_nf_cons: \forall f,g:nat_fact.\forall n,i:nat.
-\lnot (defactorize_aux (nf_cons O f) i= defactorize_aux (nf_cons (S n) g) i).
-intros.
-simplify.unfold Not.rewrite < plus_n_O.
-intro.
-apply (not_divides_defactorize_aux f i (S i) ?).
-unfold lt.apply le_n.
-rewrite > H.
-rewrite > assoc_times.
-apply (witness ? ? ((exp (nth_prime i) n)*(defactorize_aux g (S i)))).
-reflexivity.
-qed.
-
-theorem eq_defactorize_aux_to_eq: \forall f,g:nat_fact.\forall i:nat.
-defactorize_aux f i = defactorize_aux g i \to f = g.
-intro.
-elim f.
-generalize in match H.
-elim g.
-apply eq_f.
-apply inj_S. apply (inj_exp_r (nth_prime i)).
-apply lt_SO_nth_prime_n.
-assumption.
-apply False_ind.
-apply (not_eq_nf_last_nf_cons n2 n n1 i H2).
-generalize in match H1.
-elim g.
-apply False_ind.
-apply (not_eq_nf_last_nf_cons n1 n2 n i).
-apply sym_eq. assumption.
-simplify in H3.
-generalize in match H3.
-apply (nat_elim2 (\lambda n,n2.
-((nth_prime i) \sup n)*(defactorize_aux n1 (S i)) =
-((nth_prime i) \sup n2)*(defactorize_aux n3 (S i)) \to
-nf_cons n n1 = nf_cons n2 n3)).
-intro.
-elim n4. apply eq_f.
-apply (H n3 (S i)).
-simplify in H4.
-rewrite > plus_n_O.
-rewrite > (plus_n_O (defactorize_aux n3 (S i))).assumption.
-apply False_ind.
-apply (not_eq_nf_cons_O_nf_cons n1 n3 n5 i).assumption.
-intros.
-apply False_ind.
-apply (not_eq_nf_cons_O_nf_cons n3 n1 n4 i).
-apply sym_eq.assumption.
-intros.
-cut (nf_cons n4 n1 = nf_cons m n3).
-cut (n4=m).
-cut (n1=n3).
-rewrite > Hcut1.rewrite > Hcut2.reflexivity.
-change with 
-(match nf_cons n4 n1 with
-[ (nf_last m) \Rightarrow n1
-| (nf_cons m g) \Rightarrow g ] = n3).
-rewrite > Hcut.simplify.reflexivity.
-change with 
-(match nf_cons n4 n1 with
-[ (nf_last m) \Rightarrow m
-| (nf_cons m g) \Rightarrow m ] = m).
-rewrite > Hcut.simplify.reflexivity.
-apply H4.simplify in H5.
-apply (inj_times_r1 (nth_prime i)).
-apply lt_O_nth_prime_n.
-rewrite < assoc_times.rewrite < assoc_times.assumption.
-qed.
-
-theorem injective_defactorize_aux: \forall i:nat.
-injective nat_fact nat (\lambda f.defactorize_aux f i).
-change with (\forall i:nat.\forall f,g:nat_fact.
-defactorize_aux f i = defactorize_aux g i \to f = g).
-intros.
-apply (eq_defactorize_aux_to_eq f g i H).
-qed.
-
-theorem injective_defactorize: 
-injective nat_fact_all nat defactorize.
-change with (\forall f,g:nat_fact_all.
-defactorize f = defactorize g \to f = g).
-intro.elim f.
-generalize in match H.elim g.
-(* zero - zero *)
-reflexivity.
-(* zero - one *)
-simplify in H1.
-apply False_ind.
-apply (not_eq_O_S O H1).
-(* zero - proper *)
-simplify in H1.
-apply False_ind.
-apply (not_le_Sn_n O).
-rewrite > H1 in \vdash (? ? %).
-change with (O < defactorize_aux n O).
-apply lt_O_defactorize_aux.
-generalize in match H.
-elim g.
-(* one - zero *)
-simplify in H1.
-apply False_ind.
-apply (not_eq_O_S O).apply sym_eq. assumption.
-(* one - one *)
-reflexivity.
-(* one - proper *)
-simplify in H1.
-apply False_ind.
-apply (not_le_Sn_n (S O)).
-rewrite > H1 in \vdash (? ? %).
-change with ((S O) < defactorize_aux n O).
-apply lt_SO_defactorize_aux.
-generalize in match H.elim g.
-(* proper - zero *)
-simplify in H1.
-apply False_ind.
-apply (not_le_Sn_n O).
-rewrite < H1 in \vdash (? ? %).
-change with (O < defactorize_aux n O).
-apply lt_O_defactorize_aux.
-(* proper - one *)
-simplify in H1.
-apply False_ind.
-apply (not_le_Sn_n (S O)).
-rewrite < H1 in \vdash (? ? %).
-change with ((S O) < defactorize_aux n O).
-apply lt_SO_defactorize_aux.
-(* proper - proper *)
-apply eq_f.
-apply (injective_defactorize_aux O).
-exact H1.
-qed.
-
-theorem factorize_defactorize: 
-\forall f,g: nat_fact_all. factorize (defactorize f) = f.
-intros.
-apply injective_defactorize.
-(* uffa: perche' semplifica ??? *)
-change with (defactorize(factorize (defactorize f)) = (defactorize f)).
-apply defactorize_factorize.
-qed.
-