]> matita.cs.unibo.it Git - helm.git/blobdiff - helm/matita/library/nat/ord.ma
- renamed ocaml/ to components/
[helm.git] / helm / matita / library / nat / ord.ma
diff --git a/helm/matita/library/nat/ord.ma b/helm/matita/library/nat/ord.ma
deleted file mode 100644 (file)
index 24874c0..0000000
+++ /dev/null
@@ -1,193 +0,0 @@
-(**************************************************************************)
-(*       ___                                                               *)
-(*      ||M||                                                             *)
-(*      ||A||       A project by Andrea Asperti                           *)
-(*      ||T||                                                             *)
-(*      ||I||       Developers:                                           *)
-(*      ||T||       A.Asperti, C.Sacerdoti Coen,                          *)
-(*      ||A||       E.Tassi, S.Zacchiroli                                 *)
-(*      \   /                                                             *)
-(*       \ /        Matita is distributed under the terms of the          *)
-(*        v         GNU Lesser General Public License Version 2.1         *)
-(*                                                                        *)
-(**************************************************************************)
-
-set "baseuri" "cic:/matita/nat/log".
-
-include "datatypes/constructors.ma".
-include "nat/exp.ma".
-include "nat/lt_arith.ma".
-include "nat/primes.ma".
-
-(* this definition of log is based on pairs, with a remainder *)
-
-let rec p_ord_aux p n m \def
-  match n \mod m with
-  [ O \Rightarrow 
-    match p with
-      [ O \Rightarrow pair nat nat O n
-      | (S p) \Rightarrow 
-       match (p_ord_aux p (n / m) m) with
-       [ (pair q r) \Rightarrow pair nat nat (S q) r] ]
-  | (S a) \Rightarrow pair nat nat O n].
-  
-(* p_ord n m = <q,r> if m divides n q times, with remainder r *)
-definition p_ord \def \lambda n,m:nat.p_ord_aux n n m.
-
-theorem p_ord_aux_to_Prop: \forall p,n,m. O < m \to
-  match p_ord_aux p n m with
-  [ (pair q r) \Rightarrow n = m \sup q *r ].
-intro.
-elim p.
-change with 
-match (
-match n \mod m with
-  [ O \Rightarrow pair nat nat O n
-  | (S a) \Rightarrow pair nat nat O n] )
-with
-  [ (pair q r) \Rightarrow n = m \sup q * r ].
-apply (nat_case (n \mod m)).
-simplify.apply plus_n_O.
-intros.
-simplify.apply plus_n_O. 
-change with 
-match (
-match n1 \mod m with
-  [ O \Rightarrow 
-     match (p_ord_aux n (n1 / m) m) with
-       [ (pair q r) \Rightarrow pair nat nat (S q) r]
-  | (S a) \Rightarrow pair nat nat O n1] )
-with
-  [ (pair q r) \Rightarrow n1 = m \sup q * r].
-apply (nat_case1 (n1 \mod m)).intro.
-change with 
-match (
- match (p_ord_aux n (n1 / m) m) with
-   [ (pair q r) \Rightarrow pair nat nat (S q) r])
-with
-  [ (pair q r) \Rightarrow n1 = m \sup q * r].
-generalize in match (H (n1 / m) m).
-elim (p_ord_aux n (n1 / m) m).
-simplify.
-rewrite > assoc_times.
-rewrite < H3.rewrite > (plus_n_O (m*(n1 / m))).
-rewrite < H2.
-rewrite > sym_times.
-rewrite < div_mod.reflexivity.
-assumption.assumption.
-intros.simplify.apply plus_n_O. 
-qed.
-
-theorem p_ord_aux_to_exp: \forall p,n,m,q,r. O < m \to
-  (pair nat nat q r) = p_ord_aux p n m \to n = m \sup q * r.
-intros.
-change with 
-match (pair nat nat q r) with
-  [ (pair q r) \Rightarrow n = m \sup q * r ].
-rewrite > H1.
-apply p_ord_aux_to_Prop.
-assumption.
-qed.
-(* questo va spostato in primes1.ma *)
-theorem p_ord_exp: \forall n,m,i. O < m \to n \mod m \neq O \to
-\forall p. i \le p \to p_ord_aux p (m \sup i * n) m = pair nat nat i n.
-intros 5.
-elim i.
-simplify.
-rewrite < plus_n_O.
-apply (nat_case p).
-change with
- (match n \mod m with
-  [ O \Rightarrow pair nat nat O n
-  | (S a) \Rightarrow pair nat nat O n]
-  = pair nat nat O n).
-elim (n \mod m).simplify.reflexivity.simplify.reflexivity.
-intro.
-change with
- (match n \mod m with
-  [ O \Rightarrow 
-       match (p_ord_aux m1 (n / m) m) with
-       [ (pair q r) \Rightarrow pair nat nat (S q) r]
-  | (S a) \Rightarrow pair nat nat O n]
-  = pair nat nat O n).
-cut (O < n \mod m \lor O = n \mod m).
-elim Hcut.apply (lt_O_n_elim (n \mod m) H3).
-intros. simplify.reflexivity.
-apply False_ind.
-apply H1.apply sym_eq.assumption.
-apply le_to_or_lt_eq.apply le_O_n.
-generalize in match H3.
-apply (nat_case p).intro.apply False_ind.apply (not_le_Sn_O n1 H4).
-intros.
-change with
- (match ((m \sup (S n1) *n) \mod m) with
-  [ O \Rightarrow 
-       match (p_ord_aux m1 ((m \sup (S n1) *n) / m) m) with
-       [ (pair q r) \Rightarrow pair nat nat (S q) r]
-  | (S a) \Rightarrow pair nat nat O (m \sup (S n1) *n)]
-  = pair nat nat (S n1) n).
-cut (((m \sup (S n1)*n) \mod m) = O).
-rewrite > Hcut.
-change with
-(match (p_ord_aux m1 ((m \sup (S n1)*n) / m) m) with
-       [ (pair q r) \Rightarrow pair nat nat (S q) r] 
-  = pair nat nat (S n1) n). 
-cut ((m \sup (S n1) *n) / m = m \sup n1 *n).
-rewrite > Hcut1.
-rewrite > (H2 m1). simplify.reflexivity.
-apply le_S_S_to_le.assumption.
-(* div_exp *)
-change with ((m* m \sup n1 *n) / m = m \sup n1 * n).
-rewrite > assoc_times.
-apply (lt_O_n_elim m H).
-intro.apply div_times.
-(* mod_exp = O *)
-apply divides_to_mod_O.
-assumption.
-simplify.rewrite > assoc_times.
-apply (witness ? ? (m \sup n1 *n)).reflexivity.
-qed.
-
-theorem p_ord_aux_to_Prop1: \forall p,n,m. (S O) < m \to O < n \to n \le p \to
-  match p_ord_aux p n m with
-  [ (pair q r) \Rightarrow r \mod m \neq O].
-intro.elim p.absurd (O < n).assumption.
-apply le_to_not_lt.assumption.
-change with
-match 
-  (match n1 \mod m with
-    [ O \Rightarrow 
-        match (p_ord_aux n(n1 / m) m) with
-        [ (pair q r) \Rightarrow pair nat nat (S q) r]
-    | (S a) \Rightarrow pair nat nat O n1])
-with
-  [ (pair q r) \Rightarrow r \mod m \neq O].
-apply (nat_case1 (n1 \mod m)).intro.
-generalize in match (H (n1 / m) m).
-elim (p_ord_aux n (n1 / m) m).
-apply H5.assumption.
-apply eq_mod_O_to_lt_O_div.
-apply (trans_lt ? (S O)).unfold lt.apply le_n.
-assumption.assumption.assumption.
-apply le_S_S_to_le.
-apply (trans_le ? n1).change with (n1 / m < n1).
-apply lt_div_n_m_n.assumption.assumption.assumption.
-intros.
-change with (n1 \mod m \neq O).
-rewrite > H4.
-unfold Not.intro.
-apply (not_eq_O_S m1).
-rewrite > H5.reflexivity.
-qed.
-
-theorem p_ord_aux_to_not_mod_O: \forall p,n,m,q,r. (S O) < m \to O < n \to n \le p \to
- pair nat nat q r = p_ord_aux p n m \to r \mod m \neq O.
-intros.
-change with 
-  match (pair nat nat q r) with
-  [ (pair q r) \Rightarrow r \mod m \neq O].
-rewrite > H3. 
-apply p_ord_aux_to_Prop1.
-assumption.assumption.assumption.
-qed.
-