]> matita.cs.unibo.it Git - helm.git/blobdiff - helm/software/components/acic_procedural/proceduralConversion.ml
librarian: improved error detection, bug fix in time comparison functions: now the...
[helm.git] / helm / software / components / acic_procedural / proceduralConversion.ml
index d2d305ed4cffc959e107a274479389d42cfb8f64..3eadc2fcf985395f9613a64a859decb0fb45d515 100644 (file)
 module C    = Cic
 module E    = CicEnvironment
 module Un   = CicUniv
-module TC   = CicTypeChecker 
-module D    = Deannotate
+module TC   = CicTypeChecker
 module UM   = UriManager
 module Rd   = CicReduction
+module PEH  = ProofEngineHelpers
+module PT   = PrimitiveTactics
+module DTI  = DoubleTypeInference
 
-module P    = ProceduralPreprocess
-module T    = ProceduralTypes
-module M    = ProceduralMode
+module H    = ProceduralHelpers
 
 (* helpers ******************************************************************)
 
-let cic = D.deannotate_term
-
-let get_ind_type uri tyno =
-   match E.get_obj Un.empty_ugraph uri with
-      | C.InductiveDefinition (tys, _, lpsno, _), _ -> lpsno, List.nth tys tyno
-      | _                                           -> assert false
-
-let get_default_eliminator context uri tyno ty =
-   let _, (name, _, _, _) = get_ind_type uri tyno in
-   let sort, _ = TC.type_of_aux' [] context ty Un.empty_ugraph in
-   let ext = match sort with
-      | C.Sort C.Prop     -> "_ind"
-      | C.Sort C.Set      -> "_rec"
-      | C.Sort C.CProp    -> "_rec"
-      | C.Sort (C.Type _) -> "_rect" 
-      | C.Meta (_,_)      -> assert false
-      | _                 -> assert false
-   in
-   let buri = UM.buri_of_uri uri in
-   let uri = UM.uri_of_string (buri ^ "/" ^ name ^ ext ^ ".con") in
-   C.Const (uri, [])
-
 let rec list_sub start length = function
    | _  :: tl when start  > 0 -> list_sub (pred start) length tl
    | hd :: tl when length > 0 -> hd :: list_sub start (pred length) tl
@@ -92,51 +70,51 @@ let lift k n =
       | C.AMutCase (id, sp, i, outty, t, pl) -> C.AMutCase (id, sp, i, lift_term k outty, lift_term k t, List.map (lift_term k) pl)
       | C.AProd (id, n, s, t) -> C.AProd (id, n, lift_term k s, lift_term (succ k) t)
       | C.ALambda (id, n, s, t) -> C.ALambda (id, n, lift_term k s, lift_term (succ k) t)
-      | C.ALetIn (id, n, s, t) -> C.ALetIn (id, n, lift_term k s, lift_term (succ k) t)
+      | C.ALetIn (id, n, ty, s, t) -> C.ALetIn (id, n, lift_term k ty, lift_term k s, lift_term (succ k) t)
       | C.AFix (id, i, fl) -> C.AFix (id, i, List.map (lift_fix (List.length fl) k) fl)
       | C.ACoFix (id, i, fl) -> C.ACoFix (id, i, List.map (lift_cofix (List.length fl) k) fl)
    in
    lift_term k
 
-let fake_annotate c =
-   let get_binder c m =
-      try match List.nth c (pred m) with
-        | Some (C.Name s, _) -> s
-        | _                  -> assert false
-      with
-         | Invalid_argument _ -> assert false 
-   in
-   let mk_decl n v = Some (n, C.Decl v) in
-   let mk_def n v = Some (n, C.Def (v, None)) in
-   let mk_fix (name, _, _, bo) = mk_def (C.Name name) bo in
-   let mk_cofix (name, _, bo) = mk_def (C.Name name) bo in
-   let rec ann_xns c (uri, t) = uri, ann_term c t
-   and ann_ms c = function
-      | None   -> None
-      | Some t -> Some (ann_term c t)
-   and ann_fix newc c (name, i, ty, bo) =
-      "", name, i, ann_term c ty, ann_term (List.rev_append newc c) bo
-   and ann_cofix newc c (name, ty, bo) =
-      "", name, ann_term c ty, ann_term (List.rev_append newc c) bo
-   and ann_term c = function
-      | C.Sort sort -> C.ASort ("", sort)
-      | C.Implicit ann -> C.AImplicit ("", ann)
-      | C.Rel m -> C.ARel ("", "", m, get_binder c m)
-      | C.Const (uri, xnss) -> C.AConst ("", uri, List.map (ann_xns c) xnss)
-      | C.Var (uri, xnss) -> C.AVar ("", uri, List.map (ann_xns c) xnss)
-      | C.MutInd (uri, tyno, xnss) -> C.AMutInd ("", uri, tyno, List.map (ann_xns c) xnss)
-      | C.MutConstruct (uri, tyno, consno, xnss) -> C.AMutConstruct ("", uri,tyno,consno, List.map (ann_xns c) xnss)
-      | C.Meta (i, mss) -> C.AMeta("", i, List.map (ann_ms c) mss)
-      | C.Appl ts -> C.AAppl ("", List.map (ann_term c) ts)
-      | C.Cast (te, ty) -> C.ACast ("", ann_term c te, ann_term c ty)
-      | C.MutCase (sp, i, outty, t, pl) -> C.AMutCase ("", sp, i, ann_term c outty, ann_term c t, List.map (ann_term c) pl)      
-      | C.Prod (n, s, t) -> C.AProd ("", n, ann_term c s, ann_term (mk_decl n s :: c) t)
-      | C.Lambda (n, s, t) -> C.ALambda ("", n, ann_term c s, ann_term (mk_decl n s :: c) t)
-      | C.LetIn (n, s, t) -> C.ALetIn ("", n, ann_term c s, ann_term (mk_def n s :: c) t)
-      | C.Fix (i, fl) -> C.AFix ("", i, List.map (ann_fix (List.rev_map mk_fix fl) c) fl)
-      | C.CoFix (i, fl) -> C.ACoFix ("", i, List.map (ann_cofix (List.rev_map mk_cofix fl) c) fl)
-   in
-   ann_term c
+   let fake_annotate id c =
+      let get_binder c m =
+         try match List.nth c (pred m) with
+            | Some (C.Name s, _) -> s
+            | _ -> assert false
+         with
+            | Invalid_argument _ -> assert false
+      in
+      let mk_decl n v = Some (n, C.Decl v) in
+      let mk_def n v ty = Some (n, C.Def (v, ty)) in
+      let mk_fix (name, _, ty, bo) = mk_def (C.Name name) bo ty in
+      let mk_cofix (name, ty, bo) = mk_def (C.Name name) bo ty in
+      let rec ann_xns c (uri, t) = uri, ann_term c t
+      and ann_ms c = function
+         | None -> None
+         | Some t -> Some (ann_term c t)
+      and ann_fix newc c (name, i, ty, bo) =
+         id, name, i, ann_term c ty, ann_term (List.rev_append newc c) bo
+      and ann_cofix newc c (name, ty, bo) =
+         id, name, ann_term c ty, ann_term (List.rev_append newc c) bo
+      and ann_term c = function
+         | C.Sort sort -> C.ASort (id, sort)
+         | C.Implicit ann -> C.AImplicit (id, ann)
+         | C.Rel m -> C.ARel (id, id, m, get_binder c m)
+         | C.Const (uri, xnss) -> C.AConst (id, uri, List.map (ann_xns c) xnss)
+         | C.Var (uri, xnss) -> C.AVar (id, uri, List.map (ann_xns c) xnss)
+         | C.MutInd (uri, tyno, xnss) -> C.AMutInd (id, uri, tyno, List.map (ann_xns c) xnss)
+         | C.MutConstruct (uri, tyno, consno, xnss) -> C.AMutConstruct (id, uri,tyno,consno, List.map (ann_xns c) xnss)
+         | C.Meta (i, mss) -> C.AMeta(id, i, List.map (ann_ms c) mss)
+         | C.Appl ts -> C.AAppl (id, List.map (ann_term c) ts)
+         | C.Cast (te, ty) -> C.ACast (id, ann_term c te, ann_term c ty)
+         | C.MutCase (sp, i, outty, t, pl) -> C.AMutCase (id, sp, i, ann_term c outty, ann_term c t, List.map (ann_term c) pl)
+         | C.Prod (n, s, t) -> C.AProd (id, n, ann_term c s, ann_term (mk_decl n s :: c) t)
+         | C.Lambda (n, s, t) -> C.ALambda (id, n, ann_term c s, ann_term (mk_decl n s :: c) t)
+         | C.LetIn (n, s, ty, t) -> C.ALetIn (id, n, ann_term c s, ann_term c ty, ann_term (mk_def n s ty :: c) t)
+         | C.Fix (i, fl) -> C.AFix (id, i, List.map (ann_fix (List.rev_map mk_fix fl) c) fl)
+         | C.CoFix (i, fl) -> C.ACoFix (id, i, List.map (ann_cofix (List.rev_map mk_cofix fl) c) fl)
+      in
+      ann_term c
 
 let clear_absts m =
    let rec aux k n = function
@@ -146,48 +124,12 @@ let clear_absts m =
       | C.ALambda (_, _, _, t) when n > 0  -> 
          aux 0 (pred n) (lift 1 (-1) t)
       | t                      when n > 0  ->
-           Printf.eprintf "CLEAR: %u %s\n" n (CicPp.ppterm (cic t));
+           Printf.eprintf "CLEAR: %u %s\n" n (CicPp.ppterm (H.cic t));
            assert false 
       | t                                  -> t
    in 
    aux m
 
-let mk_ind context id uri tyno outty arg cases =
-try
-   let sort_disp = 0 in
-   let is_recursive = function
-      | C.MutInd (u, no, _) -> UM.eq u uri && no = tyno
-      | _                   -> false
-   in
-   let lpsno, (_, _, _, constructors) = get_ind_type uri tyno in
-   let inty, _ = TC.type_of_aux' [] context (cic arg) Un.empty_ugraph in
-   let ps = match Rd.whd ~delta:true context inty with
-      | C.MutInd _                  -> []
-      | C.Appl (C.MutInd _ :: args) -> List.map (fake_annotate context) args
-      | _                           -> assert false
-   in
-   let lps, rps = T.list_split lpsno ps in
-   let rpsno = List.length rps in
-   let eliminator = get_default_eliminator context uri tyno inty in
-   let eliminator = fake_annotate context eliminator in
-   let predicate = clear_absts rpsno (1 - sort_disp) outty in   
-   let map2 case (_, cty) = 
-      let map (h, case, k) premise = 
-         if h > 0 then pred h, lift k 1 case, k else
-        if is_recursive premise then 0, lift (succ k) 1 case, succ k else
-        0, case, succ k
-      in
-      let premises, _ = P.split context cty in
-      let _, lifted_case, _ =
-         List.fold_left map (lpsno, case, 1) (List.rev (List.tl premises))
-      in
-      lifted_case
-   in
-   let lifted_cases = List.map2 map2 cases constructors in
-   let args = eliminator :: lps @ predicate :: lifted_cases @ rps @ [arg] in
-   Some (C.AAppl (id, args))
-with Invalid_argument _ -> failwith "PCn.mk_ind"
-
 let hole id = C.AImplicit (id, Some `Hole)
 
 let meta id = C.AImplicit (id, None)
@@ -215,7 +157,7 @@ let generalize n =
       | C.AMutConstruct (id, _, _, _, _)
       | C.AMeta (id, _, _) -> meta id
       | C.ARel (id, _, m, _) -> 
-         if m = succ (k - n) then hole id else meta id
+         if succ (k - n) <= m && m <= k then hole id else meta id
       | C.AAppl (id, ts) -> 
          let ts = List.map (gen_term k) ts in
          if is_meta ts then meta id else C.AAppl (id, ts)
@@ -231,16 +173,81 @@ let generalize n =
       | C.ALambda (id, _, s, t) ->
          let s, t = gen_term k s, gen_term (succ k) t in
          if is_meta [s; t] then meta id else C.ALambda (id, anon, s, t)
-      | C.ALetIn (id, _, s, t) -> 
-         let s, t = gen_term k s, gen_term (succ k) t in
-         if is_meta [s; t] then meta id else C.ALetIn (id, anon, s, t)
+      | C.ALetIn (id, _, s, ty, t) -> 
+         let s, ty, t = gen_term k s, gen_term k ty, gen_term (succ k) t in
+         if is_meta [s; t] then meta id else C.ALetIn (id, anon, s, ty, t)
       | C.AFix (id, i, fl) -> C.AFix (id, i, List.map (gen_fix (List.length fl) k) fl)
       | C.ACoFix (id, i, fl) -> C.ACoFix (id, i, List.map (gen_cofix (List.length fl) k) fl)
    in
    gen_term 0
 
-let mk_pattern rps predicate =
-   let sort_disp = 0 in
-   let rpsno = List.length rps in
-   let body = generalize (rpsno + sort_disp) predicate in
-   clear_absts 0 (rpsno + sort_disp) body
+let mk_pattern psno predicate =
+   let body = generalize psno predicate in
+   clear_absts 0 psno body
+
+let get_clears c p xtypes = 
+   let meta = C.Implicit None in
+   let rec aux c names p it et = function
+      | []                                                -> 
+         List.rev c, List.rev names         
+      | Some (C.Name name as n, C.Decl v) as hd :: tl     ->
+         let hd, names, v = 
+           if DTI.does_not_occur 1 p && DTI.does_not_occur 1 it && DTI.does_not_occur 1 et then 
+              Some (C.Anonymous, C.Decl v), name :: names, meta 
+           else 
+              hd, names, v
+        in
+        let p = C.Lambda (n, v, p) in
+        let it = C.Prod (n, v, it) in
+        let et = C.Prod (n, v, et) in
+        aux (hd :: c) names p it et tl
+      | Some (C.Name name as n, C.Def (v, x)) as hd :: tl ->
+         let hd, names, v = 
+           if DTI.does_not_occur 1 p && DTI.does_not_occur 1 it && DTI.does_not_occur 1 et then 
+              Some (C.Anonymous, C.Def (v, x)), name :: names, meta
+           else 
+              hd, names, v
+        in
+        let p = C.LetIn (n, v, x, p) in
+        let it = C.LetIn (n, v, x, it) in
+        let et = C.LetIn (n, v, x, et) in
+        aux (hd :: c) names p it et tl
+      | Some (C.Anonymous as n, C.Decl v) as hd :: tl     ->
+        let p = C.Lambda (n, meta, p) in
+        let it = C.Lambda (n, meta, it) in
+        let et = C.Lambda (n, meta, et) in
+        aux (hd :: c) names p it et tl
+      | Some (C.Anonymous as n, C.Def (v, _)) as hd :: tl ->
+        let p = C.LetIn (n, meta, meta, p) in
+        let it = C.LetIn (n, meta, meta, it) in
+        let et = C.LetIn (n, meta, meta, et) in
+        aux (hd :: c) names p it et tl
+      | None :: tl                                        -> assert false
+   in
+   match xtypes with 
+      | Some (it, et) -> aux [] [] p it et c
+      | None          -> c, []
+
+let clear c hyp =
+   let rec aux c = function
+      | []            -> List.rev c
+      | Some (C.Name name, entry) :: tail when name = hyp ->
+        aux (Some (C.Anonymous, entry) :: c) tail
+      | entry :: tail -> aux (entry :: c) tail
+   in
+   aux [] c
+
+let elim_inferred_type context goal arg using cpattern =
+   let metasenv, ugraph = [], Un.default_ugraph in
+   let ety = H.get_type "elim_inferred_type" context using in
+   let _splits, args_no = PEH.split_with_whd (context, ety) in
+   let _metasenv, predicate, _arg, actual_args = PT.mk_predicate_for_elim 
+      ~context ~metasenv ~ugraph ~goal ~arg ~using ~cpattern ~args_no
+   in
+   let ty = C.Appl (predicate :: actual_args) in
+   let upto = List.length actual_args in
+   Rd.head_beta_reduce ~delta:false ~upto ty
+
+let does_not_occur = function
+   | C.AImplicit (_, None) -> true
+   | _                     -> false