]> matita.cs.unibo.it Git - helm.git/blobdiff - helm/software/matita/contribs/CoRN-Decl/ftc/TaylorLemma.ma
new CoRN development, generated by transcript
[helm.git] / helm / software / matita / contribs / CoRN-Decl / ftc / TaylorLemma.ma
diff --git a/helm/software/matita/contribs/CoRN-Decl/ftc/TaylorLemma.ma b/helm/software/matita/contribs/CoRN-Decl/ftc/TaylorLemma.ma
new file mode 100644 (file)
index 0000000..0fc5543
--- /dev/null
@@ -0,0 +1,322 @@
+(**************************************************************************)
+(*       ___                                                              *)
+(*      ||M||                                                             *)
+(*      ||A||       A project by Andrea Asperti                           *)
+(*      ||T||                                                             *)
+(*      ||I||       Developers:                                           *)
+(*      ||T||         The HELM team.                                      *)
+(*      ||A||         http://helm.cs.unibo.it                             *)
+(*      \   /                                                             *)
+(*       \ /        This file is distributed under the terms of the       *)
+(*        v         GNU General Public License Version 2                  *)
+(*                                                                        *)
+(**************************************************************************)
+
+(* This file was automatically generated: do not edit *********************)
+
+set "baseuri" "cic:/matita/CoRN-Decl/ftc/TaylorLemma".
+
+(* $Id: TaylorLemma.v,v 1.8 2004/04/23 10:01:01 lcf Exp $ *)
+
+(* INCLUDE
+Rolle
+*)
+
+(* UNEXPORTED
+Opaque Min.
+*)
+
+(* UNEXPORTED
+Section Taylor_Defs.
+*)
+
+(*#* *Taylor's Theorem
+
+We now prove Taylor's theorem for the remainder of the Taylor
+series.  This proof is done in two steps: first, we prove the lemma
+for a proper compact interval; next we generalize the result to two
+arbitrary (eventually equal) points in a proper interval.
+
+** First case
+
+We assume two different points [a] and [b] in the domain of [F] and
+define the nth order derivative of [F] in the interval
+[[Min(a,b),Max(a,b)]].
+*)
+
+inline cic:/CoRN/ftc/TaylorLemma/a.var.
+
+inline cic:/CoRN/ftc/TaylorLemma/b.var.
+
+inline cic:/CoRN/ftc/TaylorLemma/Hap.var.
+
+(* begin hide *)
+
+inline cic:/CoRN/ftc/TaylorLemma/Hab'.con.
+
+inline cic:/CoRN/ftc/TaylorLemma/Hab.con.
+
+inline cic:/CoRN/ftc/TaylorLemma/I.con.
+
+(* end hide *)
+
+inline cic:/CoRN/ftc/TaylorLemma/F.var.
+
+inline cic:/CoRN/ftc/TaylorLemma/Ha.var.
+
+inline cic:/CoRN/ftc/TaylorLemma/Hb.var.
+
+(* begin show *)
+
+inline cic:/CoRN/ftc/TaylorLemma/fi.con.
+
+(* end show *)
+
+(*#*
+This last local definition is simply:
+$f_i=f^{(i)}$#f<sub>i</sub>=f<sup>(i)</sup>#.
+*)
+
+(* begin hide *)
+
+inline cic:/CoRN/ftc/TaylorLemma/Taylor_lemma1.con.
+
+(* end hide *)
+
+(*#*
+Now we can define the Taylor sequence around [a].  The auxiliary
+definition gives, for any [i], the function expressed by the rule
+%\[g(x)=\frac{f^{(i)}
+(a)}{i!}*(x-a)^i.\]%#g(x)=f<sup>(i)</sup>(a)/i!*(x-a)<sup>i</sup>.#
+We denote by [A] and [B] the elements of [[Min(a,b),Max(a,b)]]
+corresponding to [a] and [b].
+*)
+
+(* begin hide *)
+
+inline cic:/CoRN/ftc/TaylorLemma/TL_compact_a.con.
+
+inline cic:/CoRN/ftc/TaylorLemma/TL_compact_b.con.
+
+(* end hide *)
+
+(* begin show *)
+
+inline cic:/CoRN/ftc/TaylorLemma/funct_i.con.
+
+(* end show *)
+
+(* begin hide *)
+
+inline cic:/CoRN/ftc/TaylorLemma/funct_i'.con.
+
+inline cic:/CoRN/ftc/TaylorLemma/TL_a_i.con.
+
+inline cic:/CoRN/ftc/TaylorLemma/TL_b_i.con.
+
+inline cic:/CoRN/ftc/TaylorLemma/TL_x_i.con.
+
+inline cic:/CoRN/ftc/TaylorLemma/TL_a_i'.con.
+
+inline cic:/CoRN/ftc/TaylorLemma/TL_b_i'.con.
+
+inline cic:/CoRN/ftc/TaylorLemma/TL_x_i'.con.
+
+inline cic:/CoRN/ftc/TaylorLemma/Taylor_lemma2.con.
+
+inline cic:/CoRN/ftc/TaylorLemma/Taylor_lemma2'.con.
+
+inline cic:/CoRN/ftc/TaylorLemma/Taylor_lemma3.con.
+
+inline cic:/CoRN/ftc/TaylorLemma/Taylor_lemma3'.con.
+
+(* end hide *)
+
+(*#*
+Adding the previous expressions up to a given bound [n] gives us the
+Taylor sum of order [n].
+*)
+
+inline cic:/CoRN/ftc/TaylorLemma/Taylor_seq'.con.
+
+(* begin hide *)
+
+inline cic:/CoRN/ftc/TaylorLemma/Taylor_seq'_aux.con.
+
+inline cic:/CoRN/ftc/TaylorLemma/TL_lemma_a.con.
+
+(* end hide *)
+
+(*#*
+It is easy to show that [b] is in the domain of this series, which allows us to write down the Taylor remainder around [b].
+*)
+
+inline cic:/CoRN/ftc/TaylorLemma/TL_lemma_b.con.
+
+(* begin hide *)
+
+inline cic:/CoRN/ftc/TaylorLemma/TL_lemma_a'.con.
+
+inline cic:/CoRN/ftc/TaylorLemma/TL_lemma_b'.con.
+
+(* end hide *)
+
+inline cic:/CoRN/ftc/TaylorLemma/Taylor_rem.con.
+
+(* begin hide *)
+
+inline cic:/CoRN/ftc/TaylorLemma/g.con.
+
+(* UNEXPORTED
+Opaque Taylor_seq'_aux Taylor_rem.
+*)
+
+(* UNEXPORTED
+Transparent Taylor_rem.
+*)
+
+(* UNEXPORTED
+Opaque Taylor_seq'.
+*)
+
+(* UNEXPORTED
+Transparent Taylor_seq' Taylor_seq'_aux.
+*)
+
+(* UNEXPORTED
+Opaque funct_i'.
+*)
+
+(* UNEXPORTED
+Opaque funct_i.
+*)
+
+inline cic:/CoRN/ftc/TaylorLemma/Taylor_lemma4.con.
+
+(* UNEXPORTED
+Transparent funct_i funct_i'.
+*)
+
+(* UNEXPORTED
+Opaque Taylor_seq'_aux.
+*)
+
+(* UNEXPORTED
+Transparent Taylor_seq'_aux.
+*)
+
+(* UNEXPORTED
+Opaque FSumx.
+*)
+
+(* UNEXPORTED
+Opaque funct_i'.
+*)
+
+inline cic:/CoRN/ftc/TaylorLemma/Taylor_lemma5.con.
+
+(* UNEXPORTED
+Transparent funct_i' FSumx.
+*)
+
+inline cic:/CoRN/ftc/TaylorLemma/funct_aux.con.
+
+inline cic:/CoRN/ftc/TaylorLemma/Taylor_lemma6.con.
+
+(* UNEXPORTED
+Ltac Lazy_Included :=
+  repeat first
+   [ apply included_IR
+   | apply included_FPlus
+   | apply included_FInv
+   | apply included_FMinus
+   | apply included_FMult
+   | apply included_FNth
+   | apply included_refl ].
+*)
+
+(* UNEXPORTED
+Ltac Lazy_Eq :=
+  repeat first
+   [ apply bin_op_wd_unfolded
+   | apply un_op_wd_unfolded
+   | apply cg_minus_wd
+   | apply div_wd
+   | apply csf_wd_unfolded ]; Algebra.
+*)
+
+inline cic:/CoRN/ftc/TaylorLemma/Taylor_lemma7.con.
+
+inline cic:/CoRN/ftc/TaylorLemma/Taylor_lemma8.con.
+
+(* UNEXPORTED
+Opaque funct_aux.
+*)
+
+(* UNEXPORTED
+Transparent funct_aux.
+*)
+
+inline cic:/CoRN/ftc/TaylorLemma/Taylor_lemma9.con.
+
+inline cic:/CoRN/ftc/TaylorLemma/g'.con.
+
+(* UNEXPORTED
+Opaque Taylor_rem funct_aux.
+*)
+
+inline cic:/CoRN/ftc/TaylorLemma/Taylor_lemma10.con.
+
+(* UNEXPORTED
+Transparent Taylor_rem funct_aux.
+*)
+
+(* end hide *)
+
+(*#*
+Now Taylor's theorem.
+
+%\begin{convention}% Let [e] be a positive real number.
+%\end{convention}%
+*)
+
+inline cic:/CoRN/ftc/TaylorLemma/e.var.
+
+inline cic:/CoRN/ftc/TaylorLemma/He.var.
+
+(* begin hide *)
+
+inline cic:/CoRN/ftc/TaylorLemma/Taylor_lemma11.con.
+
+(* end hide *)
+
+(* begin show *)
+
+inline cic:/CoRN/ftc/TaylorLemma/deriv_Sn'.con.
+
+(* end show *)
+
+(* begin hide *)
+
+inline cic:/CoRN/ftc/TaylorLemma/TLH.con.
+
+(* end hide *)
+
+(* UNEXPORTED
+Opaque funct_aux.
+*)
+
+(* UNEXPORTED
+Opaque Taylor_rem.
+*)
+
+(* UNEXPORTED
+Transparent Taylor_rem funct_aux.
+*)
+
+inline cic:/CoRN/ftc/TaylorLemma/Taylor_lemma.con.
+
+(* UNEXPORTED
+End Taylor_Defs.
+*)
+