]> matita.cs.unibo.it Git - helm.git/blobdiff - helm/software/matita/contribs/dama/dama/models/list_support.ma
nat model ported to the dualized version, but not itself dualized dedekind-sig-compl...
[helm.git] / helm / software / matita / contribs / dama / dama / models / list_support.ma
index 3aec1a0242a1b3c86c7f4743c29c8f5277c21fb9..eb70322a9a30a0307aceb63500bf1d3085060392 100644 (file)
@@ -12,6 +12,7 @@
 (*                                                                        *)
 (**************************************************************************)
 
+include "nat/minus.ma".
 include "list/list.ma".
 
 interpretation "list nth" 'nth = (nth _).
@@ -37,14 +38,33 @@ interpretation "len" 'len = (length _).
 notation < "\len \nbsp term 90 l" with precedence 69 for @{'len_appl $l}.
 interpretation "len appl" 'len_appl l = (length _ l).
 
+lemma mk_list_ext: ∀T:Type.∀f1,f2:nat→T.∀n. (∀x.x<n → f1 x = f2 x) → \mk_list f1 n = \mk_list f2 n.
+intros 4;elim n; [reflexivity] simplify; rewrite > H1; [2: apply le_n]
+apply eq_f; apply H; intros; apply H1; apply (trans_le ??? H2); apply le_S; apply le_n;
+qed.
+
 lemma len_mk_list : ∀T:Type.∀f:nat→T.∀n.\len (\mk_list f n) = n.
 intros; elim n; [reflexivity] simplify; rewrite > H; reflexivity;
 qed.
 
-inductive sorted (T:Type) (lt : T → T → Prop): list T → Prop ≝ 
-| sorted_nil : sorted T lt []
-| sorted_one : ∀x. sorted T lt [x]
-| sorted_cons : ∀x,y,tl. lt x y → sorted T lt (y::tl) → sorted T lt (x::y::tl). 
+record rel (rel_T : Type) : Type ≝ {
+  rel_op :2> rel_T → rel_T → Prop
+}.
+
+record trans_rel : Type ≝ {
+  o_T :> Type;
+  o_rel :> rel o_T;
+  o_tra : ∀x,y,z: o_T.o_rel x y → o_rel y z → o_rel x z 
+}.
+
+lemma trans: ∀r:trans_rel.∀x,y,z:r.r x y → r y z → r x z.
+apply o_tra;
+qed.
+
+inductive sorted (lt : trans_rel): list (o_T lt) → Prop ≝ 
+| sorted_nil : sorted lt []
+| sorted_one : ∀x. sorted lt [x]
+| sorted_cons : ∀x,y,tl. lt x y → sorted lt (y::tl) → sorted lt (x::y::tl). 
 
 lemma nth_nil: ∀T,i.∀def:T. \nth [] def i = def.
 intros; elim i; simplify; [reflexivity;] assumption; qed.
@@ -53,7 +73,7 @@ lemma len_append: ∀T:Type.∀l1,l2:list T. \len (l1@l2) = \len l1 + \len l2.
 intros; elim l1; [reflexivity] simplify; rewrite < H; reflexivity;
 qed.
 
-inductive non_empty_list (A:Type) : list A → Type := 
+coinductive non_empty_list (A:Type) : list A → Type := 
 | show_head: ∀x,l. non_empty_list A (x::l).
 
 lemma len_gt_non_empty : 
@@ -61,54 +81,41 @@ lemma len_gt_non_empty :
 intros; cases l in H; [intros; cases (not_le_Sn_O ? H);] intros; constructor 1;
 qed. 
 
-lemma sorted_tail: ∀T,r,x,l.sorted T r (x::l) → sorted T r l.
+lemma sorted_tail: ∀r,x,l.sorted r (x::l) → sorted r l.
 intros; inversion H; intros; [destruct H1;|destruct H1;constructor 1;]
 destruct H4; assumption;
 qed.
 
-lemma sorted_skip: 
- ∀T,r,x,y,l. 
-  transitive T r → sorted T r (x::y::l) → sorted T r (x::l).
-intros; inversion H1; intros; [1,2: destruct H2]
-destruct H5; inversion H3; intros; [destruct H5]
-[1: destruct H5; constructor 2;
-|2: destruct H8; constructor 3; [apply (H ??? H2 H5);]
-    apply (sorted_tail ???? H3);]
+lemma sorted_skip: ∀r,x,y,l. sorted r (x::y::l) → sorted r (x::l).
+intros (r x y l H1); inversion H1; intros; [1,2: destruct H]
+destruct H4; inversion H2; intros; [destruct H4]
+[1: destruct H4; constructor 2;
+|2: destruct H7; constructor 3; 
+    [ apply (o_tra ? ??? H H4); | apply (sorted_tail ??? H2);]]
 qed.
 
-lemma sorted_tail_bigger : ∀T,r,x,l,d.sorted T r (x::l) → ∀i. i < \len l → r x (\nth l d i).
+lemma sorted_tail_bigger : ∀r,x,l,d.sorted r (x::l) → ∀i. i < \len l → r x (\nth l d i).
 intros 4; elim l; [ cases (not_le_Sn_O i H1);]
 cases i in H2;
-[2: intros; apply (H d ? n);[apply (sorted_skip ????? H1)|apply le_S_S_to_le; apply H2]
+[2: intros; apply (H ? n);[apply (sorted_skip ???? H1)|apply le_S_S_to_le; apply H2]
 |1: intros; inversion H1; intros; [1,2: destruct H3]
     destruct H6; simplify; assumption;]
 qed. 
 
-lemma all_bases_positive : ∀f:q_f.∀i. OQ < nth_base (bars f) (S i).
-intro f; generalize in match (bars_begin_OQ f); generalize in match (bars_sorted f);
-cases (bars_not_nil f); intros;
-cases (cmp_nat i (len l));
-[1: lapply (sorted_tail_bigger ?? H ? H2) as K; simplify in H1;
-    rewrite > H1 in K; apply K;
-|2: rewrite > H2; simplify; elim l; simplify; [apply (q_pos_OQ one)] 
-    assumption;
-|3: simplify; elim l in i H2;[simplify; rewrite > nth_nil; apply (q_pos_OQ one)]
-    cases n in H3; intros; [cases (not_le_Sn_O ? H3)] apply (H2 n1);
-    apply (le_S_S_to_le ?? H3);]
-qed.
-
+(* move in nat/ *)
 lemma lt_n_plus_n_Sm : ∀n,m:nat.n < n + S m.
-intros; rewrite > sym_plus; apply (le_S_S n (m+n)); apply (le_plus_n m n); qed.
+intros; rewrite > sym_plus; apply (le_S_S n (m+n)); alias id "le_plus_n" = "cic:/matita/nat/le_arith/le_plus_n.con".
+apply (le_plus_n m n); qed.
 
-lemma nth_concat_lt_len:
-  ∀T:Type.∀l1,l2:list T.∀def.∀i.i < len l1 → nth (l1@l2) def i = nth l1 def i.
+lemma nth_append_lt_len:
+  ∀T:Type.∀l1,l2:list T.∀def.∀i.i < \len l1 → \nth (l1@l2) def i = \nth l1 def i.
 intros 4; elim l1; [cases (not_le_Sn_O ? H)] cases i in H H1; simplify; intros;
 [reflexivity| rewrite < H;[reflexivity] apply le_S_S_to_le; apply H1]
 qed. 
 
-lemma nth_concat_ge_len:
+lemma nth_append_ge_len:
   ∀T:Type.∀l1,l2:list T.∀def.∀i.
-    len l1 ≤ i → nth (l1@l2) def i = nth l2 def (i - len l1).
+    \len l1 ≤ i → \nth (l1@l2) def i = \nth l2 def (i - \len l1).
 intros 4; elim l1; [ rewrite < minus_n_O; reflexivity]
 cases i in H1; simplify; intros; [cases (not_le_Sn_O ? H1)]
 apply H; apply le_S_S_to_le; apply H1;
@@ -116,31 +123,160 @@ qed.
 
 lemma nth_len:
   ∀T:Type.∀l1,l2:list T.∀def,x.
-    nth (l1@x::l2) def (len l1) = x.
+    \nth (l1@x::l2) def (\len l1) = x.
 intros 2; elim l1;[reflexivity] simplify; apply H; qed.
 
-lemma all_bigger_can_concat_bigger:
-   ∀l1,l2,start,b,x,n.
-    (∀i.i< len l1 → nth_base l1 i < \fst b) →
-    (∀i.i< len l2 → \fst b ≤ nth_base l2 i) →
-    (∀i.i< len l1 → start ≤ i → x ≤ nth_base l1 i) →
-    start ≤ n → n < len (l1@b::l2) → x ≤ \fst b → x ≤ nth_base (l1@b::l2) n.
-intros; cases (cmp_nat n (len l1));
-[1: unfold nth_base;  rewrite > (nth_concat_lt_len ????? H6);
-    apply (H2 n); assumption;
-|2: rewrite > H6; unfold nth_base; rewrite > nth_len; assumption;
-|3: unfold nth_base; rewrite > nth_concat_ge_len; [2: apply lt_to_le; assumption]
-    rewrite > len_concat in H4; simplify in H4; rewrite < plus_n_Sm in H4;
-    lapply linear le_S_S_to_le to H4 as K; rewrite > sym_plus in K;
-    lapply linear le_plus_to_minus to K as X; 
-    generalize in match X; generalize in match (n - len l1); intro W; cases W; clear W X;
-    [intros; assumption] intros;
-    apply (q_le_trans ??? H5); apply (H1 n1); assumption;]
-qed. 
-
 lemma sorted_head_smaller:
-  ∀l,p. sorted (p::l) → ∀i.i < len l → \fst p < nth_base l i.
-intro l; elim l; intros; [cases (not_le_Sn_O ? H1)] cases i in H2; simplify; intros;
+  ∀r,l,p,d. sorted r (p::l) → ∀i.i < \len l → r p (\nth l d i).
+intros 2 (r l); elim l; [cases (not_le_Sn_O ? H1)] cases i in H2; simplify; intros;
 [1: inversion H1; [1,2: simplify; intros; destruct H3] intros; destruct H6; assumption; 
-|2: apply (H p ? n ?); [apply (sorted_skip ??? H1)] apply le_S_S_to_le; apply H2]
-qed.    
+|2: apply (H p ?? n ?); [apply (sorted_skip ???? H1)] apply le_S_S_to_le; apply H2]
+qed.
+
+alias symbol "lt" = "natural 'less than'".
+lemma sorted_pivot:
+  ∀r,l1,l2,p,d. sorted r (l1@p::l2) → 
+    (∀i. i < \len l1 → r (\nth l1 d i) p) ∧
+    (∀i. i < \len l2 → r p (\nth l2 d i)).
+intros 2 (r l); elim l; 
+[1: split; [intros; cases (not_le_Sn_O ? H1);] intros;
+    apply sorted_head_smaller; assumption;
+|2: simplify in H1; cases (H ?? d (sorted_tail ??? H1));
+    lapply depth = 0 (sorted_head_smaller ??? d H1) as Hs;
+    split; simplify; intros;
+    [1: cases i in H4; simplify; intros; 
+        [1: lapply depth = 0 (Hs (\len l1)) as HS; 
+            rewrite > nth_len in HS; apply HS;
+            rewrite > len_append; simplify; apply lt_n_plus_n_Sm;
+        |2: apply (H2 n); apply le_S_S_to_le; apply H4]
+    |2: apply H3; assumption]]
+qed.
+
+coinductive cases_bool (p:bool) : bool → CProp ≝
+| case_true : p = true → cases_bool p true
+| cases_false : p = false → cases_bool p false.
+
+lemma case_b : ∀A:Type.∀f:A → bool. ∀x.cases_bool (f x) (f x).
+intros; cases (f x);[left;|right] reflexivity;
+qed. 
+
+coinductive break_spec (T : Type) (n : nat) (l : list T) : list T → CProp ≝
+| break_to: ∀l1,x,l2. \len l1 = n → l = l1 @ [x] @ l2 → break_spec T n l l.     
+
+lemma list_break: ∀T,n,l. n < \len l → break_spec T n l l.
+intros 2; elim n;
+[1: elim l in H; [cases (not_le_Sn_O ? H)]
+    apply (break_to ?? ? [] a l1); reflexivity;
+|2: cases (H l); [2: apply lt_S_to_lt; assumption;] cases l2 in H3; intros;
+    [1: rewrite < H2 in H1; rewrite > H3 in H1; rewrite > append_nil in H1;
+        rewrite > len_append in H1; rewrite > plus_n_SO in H1;
+        cases (not_le_Sn_n ? H1);
+    |2: apply (break_to ?? ? (l1@[x]) t l3); 
+        [2: simplify; rewrite > associative_append; assumption;
+        |1: rewrite < H2; rewrite > len_append; rewrite > plus_n_SO; reflexivity]]]
+qed.
+
+include "logic/cprop_connectives.ma".
+
+definition eject_N ≝
+  λP.λp:∃x:nat.P x.match p with [ex_introT p _ ⇒ p].
+coercion eject_N.
+definition inject_N ≝ λP.λp:nat.λh:P p. ex_introT ? P p h.
+coercion inject_N with 0 1 nocomposites.
+
+coinductive find_spec (T:Type) (P:T→bool) (l:list T) (d:T) (res : nat) : nat → CProp ≝
+| found: 
+    ∀i. i < \len l → P (\nth l d i) = true → res = i →  
+    (∀j. j < i → P (\nth l d j) = false) → find_spec T P l d res i  
+| not_found: ∀i. i = \len l → res = i →
+    (∀j.j < \len l → P (\nth l d j) = false) → find_spec T P l d res i.
+
+lemma find_lemma : ∀T.∀P:T→bool.∀l:list T.∀d.∃i.find_spec ? P l d i i.
+intros;
+letin find ≝ (
+  let rec aux (acc: nat) (l : list T) on l : nat ≝
+    match l with
+    [ nil ⇒ acc
+    | cons x tl ⇒
+        match P x with
+        [ false ⇒ aux (S acc) tl   
+        | true ⇒ acc]]
+  in aux :
+  ∀acc,l1.∃p:nat.
+    ∀story. story @ l1 = l → acc = \len story →
+    find_spec ? P story d acc acc → 
+    find_spec ? P (story @ l1) d p p);
+[4: clearbody find; cases (find 0 l);
+    lapply (H [] (refl_eq ??) (refl_eq ??)) as K;
+    [2: apply (not_found ?? [] d); intros; try reflexivity; cases (not_le_Sn_O ? H1);
+    |1: cases K; clear K;
+        [2: exists[apply (\len l)]
+            apply not_found; try reflexivity; apply H3;
+        |1: exists[apply i] apply found;  try reflexivity; assumption;]]
+|1: intros; cases (aux (S n) l2); simplify; clear aux;
+    lapply depth = 0 (H5 (story@[t])) as K; clear H5;
+    change with (find_spec ? P (story @ ([t] @ l2)) d w w);
+    rewrite < associative_append; apply K; clear K;
+    [1: rewrite > associative_append; apply H2;
+    |2: rewrite > H3; rewrite > len_append; rewrite > sym_plus; reflexivity;
+    |3: cases H4; clear H4; destruct H7;
+        [2: rewrite > H5; rewrite > (?:S (\len story) = \len (story @ [t])); [2:
+              rewrite > len_append; rewrite > sym_plus; reflexivity;]
+            apply not_found; try reflexivity; intros; cases (cmp_nat (S j) (\len story));
+            [1: rewrite > (nth_append_lt_len ????? H8); apply H7; apply H8;
+            |2: rewrite > (nth_append_ge_len ????? (le_S_S_to_le ?? H8));
+                rewrite > (?: j - \len story = 0);[assumption]
+                rewrite > (?:j = \len story);[rewrite > minus_n_n; reflexivity]
+                apply le_to_le_to_eq; [2: apply le_S_S_to_le; assumption;] 
+                rewrite > len_append in H4;rewrite > sym_plus in H4; 
+                apply le_S_S_to_le; apply H4;]
+        |1: rewrite < H3 in H5; cases (not_le_Sn_n ? H5);]]
+|2: intros; cases H4; clear H4; 
+    [1: destruct H7; rewrite > H3 in H5; cases (not_le_Sn_n ? H5); 
+    |2: apply found; try reflexivity;
+        [1: rewrite > len_append; simplify; rewrite > H5; apply lt_n_plus_n_Sm;
+        |2: rewrite > H5; rewrite > nth_append_ge_len; [2: apply le_n]
+            rewrite < minus_n_n; assumption;
+        |3: intros; rewrite > H5 in H4; rewrite > nth_append_lt_len; [2:assumption]
+            apply H7; assumption]]
+|3: intros; rewrite > append_nil; assumption;]
+qed.
+
+lemma find : ∀T:Type.∀P:T→bool.∀l:list T.∀d:T.nat.
+intros; cases (find_lemma ? f l t); apply w; qed.
+
+lemma cases_find: ∀T,P,l,d. find_spec T P l d (find T P l d) (find T P l d).
+intros; unfold find; cases (find_lemma T P l d); simplify; assumption; qed.
+
+lemma list_elim_with_len:
+  ∀T:Type.∀P: nat → list T → CProp.
+    P O [] → (∀l,a,n.P (\len l) l → P (S n) (a::l)) →
+     ∀l.P (\len l) l.
+intros;elim l; [assumption] simplify; apply H1; apply H2;
+qed.
+lemma sorted_near:
+ ∀r,l. sorted r l → ∀i,d. S i < \len l → r (\nth l d i) (\nth l d (S i)).
+ intros 3; elim H; 
+ [1: cases (not_le_Sn_O ? H1);
+ |2: simplify in H1; cases (not_le_Sn_O ? (le_S_S_to_le ?? H1));
+ |3: simplify; cases i in H4; intros; [apply H1]
+     apply H3; apply le_S_S_to_le; apply H4]
+qed.  
+definition last ≝
+ λT:Type.λd.λl:list T. \nth l d (pred (\len l)).
+
+notation > "\last" non associative with precedence 90 for @{'last}.
+notation < "\last d l" non associative with precedence 70 for @{'last2 $d $l}.
+interpretation "list last" 'last = (last _). 
+interpretation "list last applied" 'last2 d l = (last _ d l).
+
+definition head ≝
+ λT:Type.λd.λl:list T.\nth l d O.
+
+notation > "\hd" non associative with precedence 90 for @{'hd}.
+notation < "\hd d l" non associative with precedence 70 for @{'hd2 $d $l}.
+interpretation "list head" 'hd = (head _).
+interpretation "list head applied" 'hd2 d l = (head _ d l).
+