]> matita.cs.unibo.it Git - helm.git/blobdiff - helm/software/matita/contribs/formal_topology/overlap/o-basic_pairs_to_o-basic_topologies.ma
OEIS sequence identifier found for P(n)
[helm.git] / helm / software / matita / contribs / formal_topology / overlap / o-basic_pairs_to_o-basic_topologies.ma
index c66e709dd8c14032673936df02bbabe208a864af..432025c992f1d9558aaf9d6b6fd9a9e319ffc613 100644 (file)
@@ -17,133 +17,11 @@ include "o-basic_topologies.ma".
 
 alias symbol "eq" = "setoid1 eq".
 
-(* qui la notazione non va *)
-lemma leq_to_eq_join: ∀S:OA.∀p,q:S. p ≤ q → q = (binary_join ? p q).
- intros;
- apply oa_leq_antisym;
-  [ apply oa_density; intros;
-    apply oa_overlap_sym;
-    unfold binary_join; simplify;
-    apply (. (oa_join_split : ?));
-    exists; [ apply false ]
-    apply oa_overlap_sym;
-    assumption
-  | unfold binary_join; simplify;
-    apply (. (oa_join_sup : ?)); intro;
-    cases i; whd in ⊢ (? ? ? ? ? % ?);
-     [ assumption | apply oa_leq_refl ]]
-qed.
-
-lemma overlap_monotone_left: ∀S:OA.∀p,q,r:S. p ≤ q → p >< r → q >< r.
- intros;
- apply (. (leq_to_eq_join : ?)‡#);
-  [ apply f;
-  | skip
-  | apply oa_overlap_sym;
-    unfold binary_join; simplify;
-    apply (. (oa_join_split : ?));
-    exists [ apply true ]
-    apply oa_overlap_sym;
-    assumption; ]
-qed.
-
-(* Part of proposition 9.9 *)
-lemma f_minus_image_monotone: ∀S,T.∀R:arrows2 OA S T.∀p,q. p ≤ q → R⎻ p ≤ R⎻ q.
- intros;
- apply (. (or_prop2 : ?));
- apply oa_leq_trans; [2: apply f; | skip | apply (. (or_prop2 : ?)^ -1); apply oa_leq_refl;]
-qed.
-(* Part of proposition 9.9 *)
-lemma f_minus_star_image_monotone: ∀S,T.∀R:arrows2 OA S T.∀p,q. p ≤ q → R⎻* p ≤ R⎻* q.
- intros;
- apply (. (or_prop2 : ?)^ -1);
- apply oa_leq_trans; [3: apply f; | skip | apply (. (or_prop2 : ?)); apply oa_leq_refl;]
-qed.
-
-(* Part of proposition 9.9 *)
-lemma f_image_monotone: ∀S,T.∀R:arrows2 OA S T.∀p,q. p ≤ q → R p ≤ R q.
- intros;
- apply (. (or_prop1 : ?));
- apply oa_leq_trans; [2: apply f; | skip | apply (. (or_prop1 : ?)^ -1); apply oa_leq_refl;]
-qed.
-
-(* Part of proposition 9.9 *)
-lemma f_star_image_monotone: ∀S,T.∀R:arrows2 OA S T.∀p,q. p ≤ q → R* p ≤ R* q.
- intros;
- apply (. (or_prop1 : ?)^ -1);
- apply oa_leq_trans; [3: apply f; | skip | apply (. (or_prop1 : ?)); apply oa_leq_refl;]
-qed.
-
-lemma lemma_10_2_a: ∀S,T.∀R:arrows2 OA S T.∀p. p ≤ R⎻* (R⎻ p).
- intros;
- apply (. (or_prop2 : ?)^-1);
- apply oa_leq_refl.
-qed.
-
-lemma lemma_10_2_b: ∀S,T.∀R:arrows2 OA S T.∀p. R⎻ (R⎻* p) ≤ p.
- intros;
- apply (. (or_prop2 : ?));
- apply oa_leq_refl.
-qed.
-
-lemma lemma_10_2_c: ∀S,T.∀R:arrows2 OA S T.∀p. p ≤ R* (R p).
- intros;
- apply (. (or_prop1 : ?)^-1);
- apply oa_leq_refl.
-qed.
-
-lemma lemma_10_2_d: ∀S,T.∀R:arrows2 OA S T.∀p. R (R* p) ≤ p.
- intros;
- apply (. (or_prop1 : ?));
- apply oa_leq_refl.
-qed.
-
-lemma lemma_10_3_a: ∀S,T.∀R:arrows2 OA S T.∀p. R⎻ (R⎻* (R⎻ p)) = R⎻ p.
- intros; apply oa_leq_antisym;
-  [ apply lemma_10_2_b;
-  | apply f_minus_image_monotone;
-    apply lemma_10_2_a; ]
-qed.
-
-lemma lemma_10_3_b: ∀S,T.∀R:arrows2 OA S T.∀p. R* (R (R* p)) = R* p.
- intros; apply oa_leq_antisym;
-  [ apply f_star_image_monotone;
-    apply (lemma_10_2_d ?? R p);
-  | apply lemma_10_2_c; ]
-qed.
-
-lemma lemma_10_3_c: ∀S,T.∀R:arrows2 OA S T.∀p. R (R* (R p)) = R p.
- intros; apply oa_leq_antisym;
-  [ apply lemma_10_2_d;
-  | apply f_image_monotone;
-    apply (lemma_10_2_c ?? R p); ]
-qed.
-
-lemma lemma_10_3_d: ∀S,T.∀R:arrows2 OA S T.∀p. R⎻* (R⎻ (R⎻* p)) = R⎻* p.
- intros; apply oa_leq_antisym;
-  [ apply f_minus_star_image_monotone;
-    apply (lemma_10_2_b ?? R p);
-  | apply lemma_10_2_a; ]
-qed.
-
-lemma lemma_10_4_a: ∀S,T.∀R:arrows2 OA S T.∀p. R⎻* (R⎻ (R⎻* (R⎻ p))) = R⎻* (R⎻ p).
- intros; apply (†(lemma_10_3_a ?? R p));
-qed.
-
-lemma lemma_10_4_b: ∀S,T.∀R:arrows2 OA S T.∀p. R (R* (R (R* p))) = R (R* p).
-intros; unfold in ⊢ (? ? ? % %); apply (†(lemma_10_3_b ?? R p));
-qed.
-
-lemma oa_overlap_sym': ∀o:OA.∀U,V:o. (U >< V) = (V >< U).
- intros; split; intro; apply oa_overlap_sym; assumption.
-qed.
-
 (* Qui, per fare le cose per bene, ci serve la nozione di funtore categorico *)
-definition o_basic_topology_of_o_basic_pair: BP → BTop.
+definition o_basic_topology_of_o_basic_pair: OBP → BTop.
  intro t;
  constructor 1;
-  [ apply (form t);
+  [ apply (Oform t);
   | apply (□_t ∘ Ext⎽t);
   | apply (◊_t ∘ Rest⎽t);
   | intros 2; split; intro;
@@ -180,37 +58,109 @@ definition o_basic_topology_of_o_basic_pair: BP → BTop.
 qed.
 
 definition o_continuous_relation_of_o_relation_pair:
- ∀BP1,BP2.arrows2 BP BP1 BP2 →
+ ∀BP1,BP2.arrows2 OBP BP1 BP2 →
   arrows2 BTop (o_basic_topology_of_o_basic_pair BP1) (o_basic_topology_of_o_basic_pair BP2).
  intros (BP1 BP2 t);
  constructor 1;
   [ apply (t \sub \f);
   | unfold o_basic_topology_of_o_basic_pair; simplify; intros;
     apply sym1;
-    unfold in ⊢ (? ? ? (? ? ? ? %) ?);
     apply (.= †(†e));
     change in ⊢ (? ? ? (? ? ? ? %) ?) with ((t \sub \f ∘ (⊩)) ((⊩)* U));
     cut ((t \sub \f ∘ (⊩)) ((⊩)* U) = ((⊩) ∘ t \sub \c) ((⊩)* U)) as COM;[2:
-      cases (commute ?? t); apply (e3 ^ -1 ((⊩)* U));]
+      cases (Ocommute ?? t); apply (e3 ^ -1 ((⊩)* U));]
     apply (.= †COM);
     change in ⊢ (? ? ? % ?) with (((⊩) ∘ (⊩)* ) (((⊩) ∘ t \sub \c ∘ (⊩)* ) U));
     apply (.= (lemma_10_3_c ?? (⊩) (t \sub \c ((⊩)* U))));
     apply (.= COM ^ -1);
     change in ⊢ (? ? ? % ?) with (t \sub \f (((⊩) ∘ (⊩)* ) U));
     change in e with (U=((⊩)∘(⊩ \sub BP1) \sup * ) U);
-    unfold in ⊢ (? ? ? % %); apply (†e^-1);
+    apply (†e^-1);
   | unfold o_basic_topology_of_o_basic_pair; simplify; intros;
     apply sym1;
-    unfold in ⊢ (? ? ? (? ? ? ? %) ?);
     apply (.= †(†e));
     change in ⊢ (? ? ? (? ? ? ? %) ?) with ((t \sub \f⎻* ∘ (⊩)⎻* ) ((⊩)⎻ U));
     cut ((t \sub \f⎻* ∘ (⊩)⎻* ) ((⊩)⎻ U) = ((⊩)⎻* ∘ t \sub \c⎻* ) ((⊩)⎻ U)) as COM;[2:
-      cases (commute ?? t); apply (e1 ^ -1 ((⊩)⎻ U));]
+      cases (Ocommute ?? t); apply (e1 ^ -1 ((⊩)⎻ U));]
     apply (.= †COM);
     change in ⊢ (? ? ? % ?) with (((⊩)⎻* ∘ (⊩)⎻ ) (((⊩)⎻* ∘ t \sub \c⎻* ∘ (⊩)⎻ ) U));
     apply (.= (lemma_10_3_d ?? (⊩) (t \sub \c⎻* ((⊩)⎻ U))));
     apply (.= COM ^ -1);
     change in ⊢ (? ? ? % ?) with (t \sub \f⎻* (((⊩)⎻* ∘ (⊩)⎻ ) U));
     change in e with (U=((⊩)⎻* ∘(⊩ \sub BP1)⎻ ) U);
-    unfold in ⊢ (? ? ? % %); apply (†e^-1);]
-qed.
\ No newline at end of file
+    apply (†e^-1);]
+qed.
+
+(* scrivo gli statement qua cosi' verra' un conflitto :-)
+
+1. definire il funtore OR
+2. dimostrare che ORel e' faithful
+
+3. Definire la funzione
+    Apply:
+     \forall C1,C2: CAT2.  F: arrows3 CAT2 C1 C2 -> CAT2
+    :=
+     constructor 1;
+      [ gli oggetti sono gli oggetti di C1 mappati da F
+      | i morfismi i morfismi di C1 mappati da F
+      | ....
+      ]
+
+   Quindi (Apply C1 C2 F) (che usando da ora in avanti una coercion
+   scrivero' (F C1) ) e' l'immagine di C1 tramite F ed e'
+   una sottocategoria di C2 (qualcosa da dimostare qui??? vedi sotto
+   al punto 5)
+
+4. Definire rOBP (le OBP rappresentabili) come (BP_to_OBP BP)
+  [Si puo' fare lo stesso per le OA: rOA := Rel_to_OA REL ]
+
+5. Dimostrare che OR (il funtore faithful da OBP a OBTop) e' full
+   quando applicato a rOBP.
+   Nota: puo' darsi che faccia storie ad accettare lo statement.
+   Infatti rOBP e' (BP_to_OBP BP) ed e' "una sottocategoria di OBP"
+   e OR va da OBP a OBTop. Non so se tipa subito o se devi dare
+   una "proiezione" da rOBP a OBP.
+
+6. Definire rOBTop come (OBP_to_OBTop rOBP).
+
+7. Per composizione si ha un funtore full and faithful da BP a rOBTop:
+   basta prendere (OR \circ BP_to_OBP).
+
+8. Dimostrare (banale: quasi tutti i campi sono per conversione) che
+   esiste un funtore da rOBTop a BTop. Dimostrare che tale funtore e'
+   faithful e full (banale: tutta conversione).
+
+9. Per composizione si ha un funtore full and faithful da BP a BTop.
+
+10. Dimostrare che i seguenti funtori sono anche isomorphism-dense
+    (http://planetmath.org/encyclopedia/DenseFunctor.html):
+
+    BP_to_OBP
+    OBP_to_OBTop quando applicato alle rOBP
+    OBTop_to_BTop quando applicato alle rOBTop
+
+    Concludere per composizione che anche il funtore da BP a BTop e'
+    isomorphism-dense.
+
+====== Da qui in avanti non e' "necessario" nulla:
+
+== altre cose mancanti
+
+11. Dimostrare che le r* e le * orrizzontali
+    sono isomorfe dando il funtore da r* a * e dimostrando che componendo i
+    due funtori ottengo l'identita'
+
+12. La definizione di r* fa schifo: in pratica dici solo come ottieni
+    qualcosa, ma non come lo caratterizzeresti. Ora un teorema carino
+    e' che una a* (e.g. una aOBP) e' sempre una rOBP dove "a" sta per
+    atomic. Dimostrarlo per tutte le r*.
+
+== categorish/future works
+
+13. definire astrattamente la FG-completion e usare quella per
+    ottenere le BP da Rel e le OBP da OA.
+
+14. indebolire le OA, generalizzare le costruzioni, etc. come detto
+    con Giovanni
+
+*)