]> matita.cs.unibo.it Git - helm.git/blobdiff - helm/software/matita/nlibrary/datatypes/list.ma
some reorganization + some more re-setoids.ma proofs
[helm.git] / helm / software / matita / nlibrary / datatypes / list.ma
index 4188bb2883c3a625213268f10a989d86f99a555a..5d5ed0e3489faf30fc30e5349a485f147ce39302 100644 (file)
@@ -12,7 +12,7 @@
 (*                                                                        *)
 (**************************************************************************)
 
-include "arithmetics/nat.ma".
+include "logic/pts.ma".
 
 ninductive list (A:Type[0]) : Type[0] ≝ 
   | nil: list A
@@ -33,301 +33,24 @@ notation "hvbox(l1 break @ l2)"
 interpretation "nil" 'nil = (nil ?).
 interpretation "cons" 'cons hd tl = (cons ? hd tl).
 
-ntheorem nil_cons:
-  ∀A:Type[0].∀l:list A.∀a:A. a::l ≠ [].
-#A;#l;#a; @; #H; ndestruct;
-nqed.
+nlet rec append A (l1: list A) l2 on l1 ≝ 
+  match l1 with
+  [ nil ⇒ l2
+  | cons hd tl ⇒ hd :: append A tl l2 ].
+
+interpretation "append" 'append l1 l2 = (append ? l1 l2).
 
 nlet rec id_list A (l: list A) on l ≝ 
   match l with
   [ nil ⇒ []
   | cons hd tl ⇒ hd :: id_list A tl ].
 
-nlet rec append A (l1: list A) l2 on l1 ≝ 
-  match l1 with
-  [ nil ⇒ l2
-  | cons hd tl ⇒ hd :: append A tl l2 ].
 
 ndefinition tail ≝ λA:Type[0].λl:list A.
   match l with
   [ nil ⇒  []
   | cons hd tl ⇒  tl].
 
-interpretation "append" 'append l1 l2 = (append ? l1 l2).
-
-ntheorem append_nil: ∀A:Type.∀l:list A.l @ [] = l.
-#A;#l;nelim l;//;
-#a;#l1;#IH;nnormalize;//;
-nqed.
-
-ntheorem associative_append: ∀A:Type[0].associative (list A) (append A).
-#A;#x;#y;#z;nelim x
-##[//
-##|#a;#x1;#H;nnormalize;//]
-nqed.
-
-ntheorem cons_append_commute:
-  ∀A:Type[0].∀l1,l2:list A.∀a:A.
-    a :: (l1 @ l2) = (a :: l1) @ l2.
-//;
-nqed.
-
-nlemma append_cons: ∀A.∀a:A.∀l,l1. l@(a::l1)=(l@[a])@l1.
-#A;#a;#l;#l1;nrewrite > (associative_append ????);//;
-nqed.
-
-(*ninductive permutation (A:Type) : list A -> list A -> Prop \def
-  | refl : \forall l:list A. permutation ? l l
-  | swap : \forall l:list A. \forall x,y:A. 
-              permutation ? (x :: y :: l) (y :: x :: l)
-  | trans : \forall l1,l2,l3:list A.
-              permutation ? l1 l2 -> permut1 ? l2 l3 -> permutation ? l1 l3
-with permut1 : list A -> list A -> Prop \def
-  | step : \forall l1,l2:list A. \forall x,y:A. 
-      permut1 ? (l1 @ (x :: y :: l2)) (l1 @ (y :: x :: l2)).*)
-
-(*
-
-definition x1 \def S O.
-definition x2 \def S x1.
-definition x3 \def S x2.
-   
-theorem tmp : permutation nat (x1 :: x2 :: x3 :: []) (x1 :: x3 :: x2 :: []).
-  apply (trans ? (x1 :: x2 :: x3 :: []) (x1 :: x2 :: x3 :: []) ?).
-  apply refl.
-  apply (step ? (x1::[]) [] x2 x3).
-  qed. 
-
-theorem nil_append_nil_both:
-  \forall A:Type.\forall l1,l2:list A.
-    l1 @ l2 = [] \to l1 = [] \land l2 = [].
-
-theorem test_notation: [O; S O; S (S O)] = O :: S O :: S (S O) :: []. 
-reflexivity.
-qed.
-
-theorem test_append: [O;O;O;O;O;O] = [O;O;O] @ [O;O] @ [O].
-simplify.
-reflexivity.
-qed.
-
-*)
-
-nlet rec nth A l d n on n ≝
-  match n with
-  [ O ⇒ match l with
-        [ nil ⇒ d
-        | cons (x : A) _ ⇒ x ]
-  | S n' ⇒ nth A (tail ? l) d n'].
-
-nlet rec map A B f l on l ≝
-  match l with [ nil ⇒ nil B | cons (x:A) tl ⇒ f x :: map A B f tl ]. 
-
-nlet rec foldr (A,B:Type[0]) (f : A → B → B) (b:B) l on l ≝ 
-  match l with [ nil ⇒ b | cons (a:A) tl ⇒ f a (foldr A B f b tl) ].
-   
-ndefinition length ≝ λT:Type[0].λl:list T.foldr T nat (λx,c.S c) O l.
-
-ndefinition filter ≝ 
-  λT:Type[0].λl:list T.λp:T → bool.
-  foldr T (list T) 
-    (λx,l0.match (p x) with [ true => x::l0 | false => l0]) [] l.
-
-ndefinition iota : nat → nat → list nat ≝
-  λn,m. nat_rect_Type0 (λ_.list ?) (nil ?) (λx,acc.cons ? (n+x) acc) m.
-  
-(* ### induction principle for functions visiting 2 lists in parallel *)
-nlemma list_ind2 : 
-  ∀T1,T2:Type[0].∀l1:list T1.∀l2:list T2.∀P:list T1 → list T2 → Prop.
-  length ? l1 = length ? l2 →
-  (P (nil ?) (nil ?)) → 
-  (∀tl1,tl2,hd1,hd2. P tl1 tl2 → P (hd1::tl1) (hd2::tl2)) → 
-  P l1 l2.
-#T1;#T2;#l1;#l2;#P;#Hl;#Pnil;#Pcons;
-ngeneralize in match Hl; ngeneralize in match l2;
-nelim l1
-##[#l2;ncases l2;//;
-   nnormalize;#t2;#tl2;#H;ndestruct;
-##|#t1;#tl1;#IH;#l2;ncases l2
-   ##[nnormalize;#H;ndestruct
-   ##|#t2;#tl2;#H;napply Pcons;napply IH;nnormalize in H;ndestruct;//]
-##]
-nqed.
-
-nlemma eq_map : ∀A,B,f,g,l. (∀x.f x = g x) → map A B f l = map A B g l.
-#A;#B;#f;#g;#l;#Efg;
-nelim l; nnormalize;//;
-nqed.
-
-nlemma le_length_filter : ∀A,l,p.length A (filter A l p) ≤ length A l.
-#A;#l;#p;nelim l;nnormalize
-##[//
-##|#a;#tl;#IH;ncases (p a);nnormalize;
-   ##[napply le_S_S;//;
-   ##|@2;//]
-##]
-nqed.
-
-nlemma length_append : ∀A,l,m.length A (l@m) = length A l + length A m.
-#A;#l;#m;nelim l;
-##[//
-##|#H;#tl;#IH;nnormalize;nrewrite < IH;//]
-nqed.
-
-ninductive in_list (A:Type): A → (list A) → Prop ≝
-| in_list_head : ∀ x,l.(in_list A x (x::l))
-| in_list_cons : ∀ x,y,l.(in_list A x l) → (in_list A x (y::l)).
-
-ndefinition incl : \forall A.(list A) \to (list A) \to Prop \def
-  \lambda A,l,m.\forall x.in_list A x l \to in_list A x m.
-  
-notation "hvbox(a break ∉ b)" non associative with precedence 45
-for @{ 'notmem $a $b }. 
-  
-interpretation "list member" 'mem x l = (in_list ? x l).
-interpretation "list not member" 'notmem x l = (Not (in_list ? x l)).
-interpretation "list inclusion" 'subseteq l1 l2 = (incl ? l1 l2).
-  
-naxiom not_in_list_nil : \forall A,x.\lnot in_list A x [].
-(*intros.unfold.intro.inversion H
-  [intros;lapply (sym_eq ? ? ? H2);destruct Hletin
-  |intros;destruct H4]
-qed.*)
-
-naxiom in_list_cons_case : \forall A,x,a,l.in_list A x (a::l) \to
-                          x = a \lor in_list A x l.
-(*intros;inversion H;intros
-  [destruct H2;left;reflexivity
-  |destruct H4;right;assumption]
-qed.*)
-
-naxiom in_list_tail : \forall l,x,y.
-      in_list nat x (y::l) \to x \neq y \to in_list nat x l.
-(*intros 4;elim (in_list_cons_case ? ? ? ? H)
-  [elim (H2 H1)
-  |assumption]
-qed.*)
-
-naxiom in_list_singleton_to_eq : \forall A,x,y.in_list A x [y] \to x = y.
-(*intros;elim (in_list_cons_case ? ? ? ? H)
-  [assumption
-  |elim (not_in_list_nil ? ? H1)]
-qed.*)
-
-naxiom in_list_to_in_list_append_l: \forall A.\forall x:A.
-\forall l1,l2.in_list ? x l1 \to in_list ? x (l1@l2).
-(*intros.
-elim H;simplify
-  [apply in_list_head
-  |apply in_list_cons;assumption
-  ]
-qed.*)
-
-naxiom in_list_to_in_list_append_r: \forall A.\forall x:A.
-\forall l1,l2. in_list ? x l2 \to in_list ? x (l1@l2).
-(*intros 3.
-elim l1;simplify
-  [assumption
-  |apply in_list_cons;apply H;assumption
-  ]
-qed.*)
-
-naxiom in_list_append_to_or_in_list: \forall A:Type.\forall x:A.
-\forall l,l1. in_list ? x (l@l1) \to in_list ? x l \lor in_list ? x l1.
-(*intros 3.
-elim l
-  [right.apply H
-  |simplify in H1.inversion H1;intros; destruct;
-    [left.apply in_list_head
-    | elim (H l2)
-      [left.apply in_list_cons. assumption
-      |right.assumption
-      |assumption
-      ]
-    ]
-  ]
-qed.*)
-
-nlet rec mem (A:Type) (eq: A → A → bool) x (l: list A) on l ≝
- match l with
-  [ nil ⇒ false
-  | (cons a l') ⇒
-    match eq x a with
-     [ true ⇒ true
-     | false ⇒ mem A eq x l'
-     ]
-  ].
-  
-naxiom mem_true_to_in_list :
-  \forall A,equ.
-  (\forall x,y.equ x y = true \to x = y) \to
-  \forall x,l.mem A equ x l = true \to in_list A x l.
-(* intros 5.elim l
-  [simplify in H1;destruct H1
-  |simplify in H2;apply (bool_elim ? (equ x a))
-     [intro;rewrite > (H ? ? H3);apply in_list_head
-     |intro;rewrite > H3 in H2;simplify in H2;
-      apply in_list_cons;apply H1;assumption]]
-qed.*)
-
-naxiom in_list_to_mem_true :
-  \forall A,equ.
-  (\forall x.equ x x = true) \to
-  \forall x,l.in_list A x l \to mem A equ x l = true.
-(*intros 5.elim l
-  [elim (not_in_list_nil ? ? H1)
-  |elim H2
-    [simplify;rewrite > H;reflexivity
-    |simplify;rewrite > H4;apply (bool_elim ? (equ a1 a2));intro;reflexivity]].
-qed.*)
-
-naxiom in_list_filter_to_p_true : \forall A,l,x,p.
-in_list A x (filter A l p) \to p x = true.
-(* intros 4;elim l
-  [simplify in H;elim (not_in_list_nil ? ? H)
-  |simplify in H1;apply (bool_elim ? (p a));intro;rewrite > H2 in H1;
-   simplify in H1
-     [elim (in_list_cons_case ? ? ? ? H1)
-        [rewrite > H3;assumption
-        |apply (H H3)]
-     |apply (H H1)]]
-qed.*)
-
-naxiom in_list_filter : \forall A,l,p,x.in_list A x (filter A l p) \to in_list A x l.
-(*intros 4;elim l
-  [simplify in H;elim (not_in_list_nil ? ? H)
-  |simplify in H1;apply (bool_elim ? (p a));intro;rewrite > H2 in H1;
-   simplify in H1
-     [elim (in_list_cons_case ? ? ? ? H1)
-        [rewrite > H3;apply in_list_head
-        |apply in_list_cons;apply H;assumption]
-     |apply in_list_cons;apply H;assumption]]
-qed.*)
-
-naxiom in_list_filter_r : \forall A,l,p,x.
-              in_list A x l \to p x = true \to in_list A x (filter A l p).
-(* intros 4;elim l
-  [elim (not_in_list_nil ? ? H)
-  |elim (in_list_cons_case ? ? ? ? H1)
-     [rewrite < H3;simplify;rewrite > H2;simplify;apply in_list_head
-     |simplify;apply (bool_elim ? (p a));intro;simplify;
-        [apply in_list_cons;apply H;assumption
-        |apply H;assumption]]]
-qed.*)
-
-naxiom incl_A_A: ∀T,A.incl T A A.
-(*intros.unfold incl.intros.assumption.
-qed.*)
-
-naxiom incl_append_l : ∀T,A,B.incl T A (A @ B).
-(*unfold incl; intros;autobatch.
-qed.*)
-
-naxiom incl_append_r : ∀T,A,B.incl T B (A @ B).
-(*unfold incl; intros;autobatch.
-qed.*)
-
-naxiom incl_cons : ∀T,A,B,x.incl T A B → incl T (x::A) (x::B).
-(*unfold incl; intros;elim (in_list_cons_case ? ? ? ? H1);autobatch.
-qed.*)
+nlet rec flatten S (l : list (list S)) on l : list S ≝ 
+match l with [ nil ⇒ [ ] | cons w tl ⇒ w @ flatten ? tl ].