]> matita.cs.unibo.it Git - helm.git/blobdiff - matita/dama/integration_algebras.ma
- transcript: now outputs includes and coercions correctly
[helm.git] / matita / dama / integration_algebras.ma
index b2fb189e9dbd35196e6c7ac7370bab0246ccca47..46bebc0e9da6745255d64691b99f5fe6a00eb7e2 100644 (file)
 
 set "baseuri" "cic:/matita/integration_algebras/".
 
-include "reals.ma".
-
-record is_vector_space (K: field) (G:abelian_group) (emult:K→G→G) : Prop
-≝
- { vs_nilpotent: ∀v. emult 0 v = 0;
-   vs_neutral: ∀v. emult 1 v = v;
-   vs_distributive: ∀a,b,v. emult (a + b) v = (emult a v) + (emult b v);
-   vs_associative: ∀a,b,v. emult (a * b) v = emult a (emult b v)
- }.
-
-record vector_space (K:field): Type \def
-{ vs_abelian_group :> abelian_group;
-  emult: K → vs_abelian_group → vs_abelian_group;
-  vs_vector_space_properties :> is_vector_space K vs_abelian_group emult
-}.
-
-interpretation "Vector space external product" 'times a b =
- (cic:/matita/integration_algebras/emult.con _ _ a b).
+include "vector_spaces.ma".
 
 record is_lattice (C:Type) (join,meet:C→C→C) : Prop \def
  { (* abelian semigroup properties *)
@@ -55,6 +38,11 @@ definition le \def λC:Type.λL:lattice C.λf,g. meet ? L f g = f.
 interpretation "Lattice le" 'leq a b =
  (cic:/matita/integration_algebras/le.con _ _ a b).
 
+definition lt \def λC:Type.λL:lattice C.λf,g. le ? L f g ∧ f ≠ g.
+
+interpretation "Lattice lt" 'lt a b =
+ (cic:/matita/integration_algebras/lt.con _ _ a b).
+
 definition carrier_of_lattice ≝
  λC:Type.λL:lattice C.C.
 
@@ -74,14 +62,39 @@ record riesz_space (K:ordered_field_ch0) : Type \def
 
 definition absolute_value \def λK.λS:riesz_space K.λf.join ? S f (-f).   
 
+(*CSC: qui la notazione non fa capire!!! *)
+definition is_riesz_norm ≝
+ λR:real.λV:riesz_space R.λnorm:norm ? V.
+  ∀f,g:V. le ? V (absolute_value ? V f) (absolute_value ? V g) →
+   of_le R (norm f) (norm g).
+
+record riesz_norm (R:real) (V:riesz_space R) : Type ≝
+ { rn_norm:> norm ? V;
+   rn_riesz_norm_property: is_riesz_norm ? ? rn_norm
+ }.
+
+(*CSC: non fa la chiusura delle coercion verso funclass *)
+definition rn_function ≝
+ λR:real.λV:riesz_space R.λnorm:riesz_norm ? V.
+  n_function ? ? (rn_norm ? ? norm).
+
+coercion cic:/matita/integration_algebras/rn_function.con 1.
+
+(************************** L-SPACES *************************************)
+
+record is_l_space (R:real) (V:riesz_space R) (norm:riesz_norm ? V) : Prop ≝
+ { ls_banach: is_complete ? V (induced_distance ? ? norm);
+   ls_linear: ∀f,g:V. le ? V 0 f → le ? V 0 g → norm (f+g) = norm f + norm g
+ }.
+
+(******************** ARCHIMEDEAN RIESZ SPACES ***************************)
+
 record is_archimedean_riesz_space (K) (S:riesz_space K) : Prop
 \def
   { ars_archimedean: ∃u.∀n.∀a.∀p:n > O.
      le ? S
       (absolute_value ? S a)
-      (emult ? S
-        (inv ? (sum_field K n) (not_eq_sum_field_zero ? n p))
-        u) →
+      ((inv ? (sum_field K n) (not_eq_sum_field_zero ? n p))* u) →
      a = 0
   }.
 
@@ -90,6 +103,144 @@ record archimedean_riesz_space (K:ordered_field_ch0) : Type \def
    ars_archimedean_property: is_archimedean_riesz_space ? ars_riesz_space
  }.
 
+record is_integral (K) (R:archimedean_riesz_space K) (I:R→K) : Prop
+\def
+ { i_positive: ∀f:R. le ? R 0 f → of_le K 0 (I f);
+   i_linear1: ∀f,g:R. I (f + g) = I f + I g;
+   i_linear2: ∀f:R.∀k:K. I (k*f) = k*(I f)
+ }.
+
+definition is_weak_unit ≝
+(* This definition is by Spitters. He cites Fremlin 353P, but:
+   1. that theorem holds only in f-algebras (as in Spitters, but we are
+      defining it on Riesz spaces)
+   2. Fremlin proves |x|/\u=0 \to u=0. How do we remove the absolute value?
+ λR:real.λV:archimedean_riesz_space R.λunit: V.
+  ∀x:V. meet x unit = 0 → u = 0.
+  3. Fremlin proves u > 0 implies x /\ u > 0  > 0 for Archimedean spaces
+   only. We pick this definition for now.
+*) λR:real.λV:archimedean_riesz_space R.λe:V.
+    ∀v:V. lt ? V 0 v → lt ? V 0 (meet ? V v e).
+
+(* Here we are avoiding a construction (the quotient space to define
+   f=g iff I(|f-g|)=0 *)
+record integration_riesz_space (R:real) : Type \def
+ { irs_archimedean_riesz_space:> archimedean_riesz_space R;
+   irs_unit: irs_archimedean_riesz_space;
+   irs_weak_unit: is_weak_unit ? ? irs_unit;
+   integral: irs_archimedean_riesz_space → R;
+   irs_integral_properties: is_integral ? ? integral;
+   irs_limit1:
+    ∀f:irs_archimedean_riesz_space.
+     tends_to ?
+      (λn.integral (meet ? irs_archimedean_riesz_space f
+       ((sum_field R n)*irs_unit)))
+       (integral f);
+   irs_limit2:
+    ∀f:irs_archimedean_riesz_space.
+     tends_to ?
+      (λn.
+        integral (meet ? irs_archimedean_riesz_space f
+         ((inv ? (sum_field R (S n))
+           (not_eq_sum_field_zero R (S n) (le_S_S O n (le_O_n n)))
+         ) * irs_unit))) 0;
+   irs_quotient_space1:
+    ∀f,g:irs_archimedean_riesz_space.
+     integral (absolute_value ? irs_archimedean_riesz_space (f - g)) = 0 → f=g
+ }.
+
+definition induced_norm_fun ≝
+ λR:real.λV:integration_riesz_space R.λf:V.
+  integral ? ? (absolute_value ? ? f).
+
+lemma induced_norm_is_norm:
+ ∀R:real.∀V:integration_riesz_space R.is_norm ? V (induced_norm_fun ? V).
+ intros;
+ apply mk_is_norm;
+  [ apply mk_is_semi_norm;
+     [ unfold induced_norm_fun;
+       intros;
+       apply i_positive;
+       [ apply (irs_integral_properties ? V)
+       | (* difficile *)
+         elim daemon
+       ]
+     | intros;
+       unfold induced_norm_fun;
+       (* facile *)
+       elim daemon
+     | intros;
+       unfold induced_norm_fun;
+       (* difficile *)
+       elim daemon
+     ]
+  | intros;
+    unfold induced_norm_fun in H;
+    apply irs_quotient_space1;
+    unfold minus;
+    rewrite < plus_comm;
+    rewrite < eq_zero_opp_zero;
+    rewrite > zero_neutral;
+    assumption
+  ].
+qed.
+
+definition induced_norm ≝
+ λR:real.λV:integration_riesz_space R.
+  mk_norm ? ? (induced_norm_fun ? V) (induced_norm_is_norm ? V).
+
+lemma is_riesz_norm_induced_norm:
+ ∀R:real.∀V:integration_riesz_space R.
+  is_riesz_norm ? ? (induced_norm ? V).
+ intros;
+ unfold is_riesz_norm;
+ intros;
+ unfold induced_norm;
+ simplify;
+ unfold induced_norm_fun;
+ (* difficile *)
+ elim daemon.
+qed.
+
+definition induced_riesz_norm ≝
+ λR:real.λV:integration_riesz_space R.
+  mk_riesz_norm ? ? (induced_norm ? V) (is_riesz_norm_induced_norm ? V).
+
+definition distance_induced_by_integral ≝
+ λR:real.λV:integration_riesz_space R.
+  induced_distance ? ? (induced_norm R V).
+
+definition is_complete_integration_riesz_space ≝
+ λR:real.λV:integration_riesz_space R.
+  is_complete ? ? (distance_induced_by_integral ? V).
+
+record complete_integration_riesz_space (R:real) : Type ≝
+ { cirz_integration_riesz_space:> integration_riesz_space R;
+   cirz_complete_integration_riesz_space_property:
+    is_complete_integration_riesz_space ? cirz_integration_riesz_space
+ }.
+
+(* now we prove that any complete integration riesz space is an L-space *)
+
+theorem is_l_space_l_space_induced_by_integral:
+ ∀R:real.∀V:complete_integration_riesz_space R.
+  is_l_space ? ? (induced_riesz_norm ? V).
+ intros;
+ constructor 1;
+  [ apply cirz_complete_integration_riesz_space_property
+  | intros;
+    unfold induced_riesz_norm;
+    simplify;
+    unfold induced_norm;
+    simplify;
+    unfold induced_norm_fun;
+    (* difficile *)
+    elim daemon
+  ].
+qed.
+
+(**************************** f-ALGEBRAS ********************************)
+
 record is_algebra (K: field) (V:vector_space K) (mult:V→V→V) (one:V) : Prop
 ≝
  { (* ring properties *)
@@ -99,80 +250,45 @@ record is_algebra (K: field) (V:vector_space K) (mult:V→V→V) (one:V) : Prop
    a_associative_right: ∀a,f,g. a * (mult f g) = mult f (a * g)
  }.
 
-record algebra (K: field) (V:vector_space K) : Type \def
+record algebra (K: field) (V:vector_space K) (a_one:V) : Type \def
  { a_mult: V → V → V;
-   a_one: V;
-   a_algebra_properties: is_algebra K V a_mult a_one
+   a_algebra_properties: is_algebra ? ? a_mult a_one
  }.
 
 interpretation "Algebra product" 'times a b =
  (cic:/matita/integration_algebras/a_mult.con _ _ _ a b).
 
-interpretation "Algebra one" 'one =
- (cic:/matita/integration_algebras/a_one.con _ _ _).
-
 definition ring_of_algebra ≝
- λK.λV:vector_space K.λA:algebra ? V.
-  mk_ring V (a_mult ? ? A) (a_one ? ? A)
-   (a_ring ? ? ? ? (a_algebra_properties ? ? A)).
+ λK.λV:vector_space K.λone:V.λA:algebra ? V one.
+  mk_ring V (a_mult ? ? ? A) one
+   (a_ring ? ? ? ? (a_algebra_properties ? ? A)).
 
 coercion cic:/matita/integration_algebras/ring_of_algebra.con.
 
-record is_f_algebra (K) (S:archimedean_riesz_space K) (A:algebra ? S) : Prop
+record is_f_algebra (K) (S:archimedean_riesz_space K) (one: S)
+ (A:algebra ? S one) : Prop
 \def 
 { compat_mult_le:
    ∀f,g:S.
-    le ? S 0 f → le ? S 0 g → le ? S 0 (a_mult ? ? A f g);
+    le ? S 0 f → le ? S 0 g → le ? S 0 (a_mult ? ? A f g);
   compat_mult_meet:
    ∀f,g,h:S.
-    meet ? S f g = 0 → meet ? S (a_mult ? ? A h f) g = 0
+    meet ? S f g = 0 → meet ? S (a_mult ? ? A h f) g = 0
 }.
 
-record f_algebra (K:ordered_field_ch0) : Type \def 
-{ fa_archimedean_riesz_space:> archimedean_riesz_space K;
-  fa_algebra:> algebra ? fa_archimedean_riesz_space;
-  fa_f_algebra_properties: is_f_algebra ? fa_archimedean_riesz_space fa_algebra
+record f_algebra (K:ordered_field_ch0) (R:archimedean_riesz_space K) (one:R) :
+Type \def 
+{ fa_algebra:> algebra ? R one;
+  fa_f_algebra_properties: is_f_algebra ? ? ? fa_algebra
 }.
 
 (* to be proved; see footnote 2 in the paper by Spitters *)
-axiom symmetric_a_mult: ∀K.∀A:f_algebra K. symmetric ? (a_mult ? ? A).
-
-
-definition tends_to : ∀F:ordered_field_ch0.∀f:nat→F.∀l:F.Prop.
- alias symbol "leq" = "Ordered field le".
- alias id "le" = "cic:/matita/nat/orders/le.ind#xpointer(1/1)".
- apply
-  (λF:ordered_field_ch0.λf:nat → F.λl:F.
-    ∀n:nat.∃m:nat.∀j:nat. le m j →
-     l - (inv F (sum_field F (S n)) ?) ≤ f j ∧
-     f j ≤ l + (inv F (sum_field F (S n)) ?));
- apply not_eq_sum_field_zero;
- unfold;
- auto new.
-qed.
+axiom symmetric_a_mult:
+ ∀K,R,one.∀A:f_algebra K R one. symmetric ? (a_mult ? ? ? A).
 
-record is_integral (K) (A:f_algebra K) (I:Type_OF_f_algebra ? A→K) : Prop
-\def
- { i_positive: ∀f:Type_OF_f_algebra ? A. le ? (lattice_OF_f_algebra ? A) 0 f → of_le K 0 (I f);
-   i_linear1: ∀f,g:Type_OF_f_algebra ? A. I (f + g) = I f + I g;
-   i_linear2: ∀f:A.∀k:K. I (emult ? A k f) = k*(I f)
- }.
-
-(* Here we are avoiding a construction (the quotient space to define
-   f=g iff I(|f-g|)=0 *)
-record is_integration_f_algebra (K) (A:f_algebra K) (I:Type_OF_f_algebra ? A→K) : Prop
-\def
- { ifa_integral: is_integral ? ? I;
-   ifa_limit1:
-    ∀f:A. tends_to ? (λn.I(meet ? A f ((sum_field K n)*(a_one ? ? A)))) (I f);
-   ifa_limit2:
-    ∀f:A.
-     tends_to ?
-      (λn.
-        I (meet ? A f
-         ((inv ? (sum_field K (S n))
-           (not_eq_sum_field_zero K (S n) (le_S_S O n (le_O_n n)))
-         ) * (a_one ? ? A)))) 0;
-   ifa_quotient_space1:
-    ∀f,g:A. f=g → I(absolute_value ? A (f - g)) = 0
+record integration_f_algebra (R:real) : Type \def
+ { ifa_integration_riesz_space:> integration_riesz_space R;
+   ifa_f_algebra:>
+    f_algebra ? ifa_integration_riesz_space
+     (irs_unit ? ifa_integration_riesz_space)
  }.