]> matita.cs.unibo.it Git - helm.git/blobdiff - matita/library/Fsub/util.ma
new implementation of the destruct tactic,
[helm.git] / matita / library / Fsub / util.ma
index 2e50ed5c014e581f70b89be131f48bf5dfef6fce..4f5e1542232f753e7fbb209ecc3fbb0a7ec69760 100644 (file)
@@ -19,27 +19,40 @@ include "list/list.ma".
 
 (*** useful definitions and lemmas not really related to Fsub ***)
 
-lemma eqb_case : \forall x,y.(eqb x y) = true \lor (eqb x y) = false.
-intros;elim (eqb x y);autobatch;
-qed.
-       
-lemma eq_eqb_case : \forall x,y.((x = y) \land (eqb x y) = true) \lor
-                                ((x \neq y) \land (eqb x y) = false).
-intros;lapply (eqb_to_Prop x y);elim (eqb_case x y)
-  [rewrite > H in Hletin;simplify in Hletin;left;autobatch
-  |rewrite > H in Hletin;simplify in Hletin;right;autobatch]
-qed.
-
-let rec max m n \def
+definition max \def 
+\lambda m,n.
   match (leb m n) with
      [true \Rightarrow n
      |false \Rightarrow m]. 
+     
+lemma le_n_max_m_n: \forall m,n:nat. n \le max m n.
+intros.
+unfold max.
+apply (leb_elim m n)
+  [simplify.intros.apply le_n
+  |simplify.intros.autobatch
+  ]
+qed.
+  
+lemma le_m_max_m_n: \forall m,n:nat. m \le max m n.
+intros.
+unfold max.
+apply (leb_elim m n)
+  [simplify.intro.assumption
+  |simplify.intros.autobatch
+  ]
+qed.  
+
+inductive in_list (A:Type): A → (list A) → Prop ≝
+| in_Base : ∀ x,l.(in_list A x (x::l))
+| in_Skip : ∀ x,y,l.(in_list A x l) → (in_list A x (y::l)).
 
-inductive in_list (A : Type) : A \to (list A) \to Prop \def
-  | in_Base : \forall x:A.\forall l:(list A).
-              (in_list A x (x :: l))
-  | in_Skip : \forall x,y:A.\forall l:(list A).
-              (in_list A x l) \to (in_list A x (y :: l)).
+notation > "hvbox(x ∈ l)"
+  non associative with precedence 30 for @{ 'inlist $x $l }.
+notation < "hvbox(x \nbsp ∈ \nbsp l)"
+  non associative with precedence 30 for @{ 'inlist $x $l }.
+interpretation "item in list" 'inlist x l =
+  (cic:/matita/Fsub/util/in_list.ind#xpointer(1/1) _ x l).
 
 definition incl : \forall A.(list A) \to (list A) \to Prop \def
   \lambda A,l,m.\forall x.(in_list A x l) \to (in_list A x m).               
@@ -52,82 +65,70 @@ definition map : \forall A,B,f.((list A) \to (list B)) \def
       |(cons (a:A) (t:(list A))) \Rightarrow 
         (cons B (f a) (map t))] in map.
 
-definition swap : nat \to nat \to nat \to nat \def
-  \lambda u,v,x.match (eqb x u) with
-    [true \Rightarrow v
-    |false \Rightarrow match (eqb x v) with
-       [true \Rightarrow u
-       |false \Rightarrow x]].
-
 lemma in_list_nil : \forall A,x.\lnot (in_list A x []).
 intros.unfold.intro.inversion H
-  [intros;lapply (sym_eq ? ? ? H2);absurd (a::l = [])
-     [assumption|apply nil_cons]
-  |intros;lapply (sym_eq ? ? ? H4);absurd (a1::l = [])
-     [assumption|apply nil_cons]]
+  [intros;lapply (sym_eq ? ? ? H2);destruct Hletin
+  |intros;destruct H4]
 qed.
 
-lemma notin_cons : \forall A,x,y,l.\lnot (in_list A x (y::l)) \to
-                      (y \neq x) \land \lnot (in_list A x l).
-intros.split
-  [unfold;intro;apply H;rewrite > H1;constructor 1
-  |unfold;intro;apply H;constructor 2;assumption]
+lemma in_cons_case : ∀A.∀x,h:A.∀t:list A.x ∈ h::t → x = h ∨ (x ∈ t).
+intros;inversion H;intros
+  [destruct H2;left;symmetry;reflexivity
+  |destruct H4;right;applyS H1]
 qed.
 
-lemma swap_left : \forall x,y.(swap x y x) = y.
-intros;unfold swap;rewrite > eqb_n_n;simplify;reflexivity;
+lemma append_nil:\forall A:Type.\forall l:list A. l@[]=l.
+intros.
+elim l;intros;autobatch.
 qed.
 
-lemma swap_right : \forall x,y.(swap x y y) = x.
-intros;unfold swap;elim (eq_eqb_case y x)
-  [elim H;rewrite > H2;simplify;rewrite > H1;reflexivity
-  |elim H;rewrite > H2;simplify;rewrite > eqb_n_n;simplify;reflexivity]
+lemma append_cons:\forall A.\forall a:A.\forall l,l1. 
+l@(a::l1)=(l@[a])@l1.
+intros.
+rewrite > associative_append.
+reflexivity.
 qed.
 
-lemma swap_other : \forall x,y,z.(z \neq x) \to (z \neq y) \to (swap x y z) = z.
-intros;unfold swap;elim (eq_eqb_case z x)
-  [elim H2;lapply (H H3);elim Hletin
-  |elim H2;rewrite > H4;simplify;elim (eq_eqb_case z y)
-     [elim H5;lapply (H1 H6);elim Hletin
-     |elim H5;rewrite > H7;simplify;reflexivity]]
-qed. 
+lemma in_list_append1: \forall A.\forall x:A.
+\forall l1,l2. x \in l1 \to x \in l1@l2.
+intros.
+elim H
+  [simplify.apply in_Base
+  |simplify.apply in_Skip.assumption
+  ]
+qed.
 
-lemma swap_inv : \forall u,v,x.(swap u v (swap u v x)) = x.
-intros;unfold in match (swap u v x);elim (eq_eqb_case x u)
-  [elim H;rewrite > H2;simplify;rewrite > H1;apply swap_right
-  |elim H;rewrite > H2;simplify;elim (eq_eqb_case x v)
-     [elim H3;rewrite > H5;simplify;rewrite > H4;apply swap_left
-     |elim H3;rewrite > H5;simplify;apply (swap_other ? ? ? H1 H4)]]
+lemma in_list_append2: \forall A.\forall x:A.
+\forall l1,l2. x \in l2 \to x \in l1@l2.
+intros 3.
+elim l1
+  [simplify.assumption
+  |simplify.apply in_Skip.apply H.assumption
+  ]
 qed.
 
-lemma swap_inj : \forall u,v,x,y.(swap u v x) = (swap u v y) \to x = y.
-intros;unfold swap in H;elim (eq_eqb_case x u)
-  [elim H1;elim (eq_eqb_case y u)
-     [elim H4;rewrite > H5;assumption
-     |elim H4;rewrite > H3 in H;rewrite > H6 in H;simplify in H;
-      elim (eq_eqb_case y v)
-        [elim H7;rewrite > H9 in H;simplify in H;rewrite > H in H8;
-         lapply (H5 H8);elim Hletin
-        |elim H7;rewrite > H9 in H;simplify in H;elim H8;symmetry;assumption]]
-  |elim H1;elim (eq_eqb_case y u)
-     [elim H4;rewrite > H3 in H;rewrite > H6 in H;simplify in H;
-      elim (eq_eqb_case x v)
-        [elim H7;rewrite > H9 in H;simplify in H;rewrite < H in H8;
-         elim H2;assumption
-        |elim H7;rewrite > H9 in H;simplify in H;elim H8;assumption]
-     |elim H4;rewrite > H3 in H;rewrite > H6 in H;simplify in H;
-      elim (eq_eqb_case x v)
-        [elim H7;rewrite > H9 in H;elim (eq_eqb_case y v)
-           [elim H10;rewrite > H11;assumption
-           |elim H10;rewrite > H12 in H;simplify in H;elim H5;symmetry;
-            assumption]
-        |elim H7;rewrite > H9 in H;elim (eq_eqb_case y v)
-           [elim H10;rewrite > H12 in H;simplify in H;elim H2;assumption
-           |elim H10;rewrite > H12 in H;simplify in H;assumption]]]]
+theorem append_to_or_in_list: \forall A:Type.\forall x:A.
+\forall l,l1. x \in l@l1 \to (x \in l) \lor (x \in l1).
+intros 3.
+elim l
+  [right.apply H
+  |simplify in H1.inversion H1;intros; destruct;
+    [left.apply in_Base
+    | elim (H l2)
+      [left.apply in_Skip. assumption
+      |right.assumption
+      |assumption
+      ]
+    ]
+  ]
 qed.
 
 lemma max_case : \forall m,n.(max m n) = match (leb m n) with
-      [ false \Rightarrow n
-      | true \Rightarrow m ].
+      [ true \Rightarrow n
+      | false \Rightarrow m ].
 intros;elim m;simplify;reflexivity;
-qed. 
\ No newline at end of file
+qed.
+
+lemma incl_A_A: ∀T,A.incl T A A.
+intros.unfold incl.intros.assumption.
+qed.
\ No newline at end of file