]> matita.cs.unibo.it Git - helm.git/blobdiff - matita/matita/contribs/lambda/subterms/lift.ma
- a few more lemmas ...
[helm.git] / matita / matita / contribs / lambda / subterms / lift.ma
diff --git a/matita/matita/contribs/lambda/subterms/lift.ma b/matita/matita/contribs/lambda/subterms/lift.ma
deleted file mode 100644 (file)
index 0917949..0000000
+++ /dev/null
@@ -1,254 +0,0 @@
-(**************************************************************************)
-(*       ___                                                              *)
-(*      ||M||                                                             *)
-(*      ||A||       A project by Andrea Asperti                           *)
-(*      ||T||                                                             *)
-(*      ||I||       Developers:                                           *)
-(*      ||T||         The HELM team.                                      *)
-(*      ||A||         http://helm.cs.unibo.it                             *)
-(*      \   /                                                             *)
-(*       \ /        This file is distributed under the terms of the       *)
-(*        v         GNU General Public License Version 2                  *)
-(*                                                                        *)
-(**************************************************************************)
-
-include "subterms/subterms.ma".
-
-(* RELOCATION FOR SUBTERMS **************************************************)
-
-let rec slift h d E on E ≝ match E with
-[ SVRef b i   ⇒ {b}#(tri … i d i (i + h) (i + h))
-| SAbst b T   ⇒ {b}𝛌.(slift h (d+1) T)
-| SAppl b V T ⇒ {b}@(slift h d V).(slift h d T)
-].
-
-interpretation "relocation for subterms" 'Lift h d E = (slift h d E).
-
-lemma slift_vref_lt: ∀b,d,h,i. i < d → ↑[d, h] {b}#i = {b}#i.
-normalize /3 width=1/
-qed.
-
-lemma slift_vref_ge: ∀b,d,h,i. d ≤ i → ↑[d, h] {b}#i = {b}#(i+h).
-#b #d #h #i #H elim (le_to_or_lt_eq … H) -H
-normalize // /3 width=1/
-qed.
-
-lemma slift_id: ∀E,d. ↑[d, 0] E = E.
-#E elim E -E
-[ #b #i #d elim (lt_or_ge i d) /2 width=1/
-| /3 width=1/
-| /3 width=1/
-]
-qed.
-
-lemma slift_inv_vref_lt: ∀b0,j,d. j < d → ∀h,E. ↑[d, h] E = {b0}#j → E = {b0}#j.
-#b0 #j #d #Hjd #h * normalize
-[ #b #i elim (lt_or_eq_or_gt i d) #Hid
-  [ >(tri_lt ???? … Hid) -Hid -Hjd //
-  | #H destruct >tri_eq in Hjd; #H
-    elim (plus_lt_false … H)
-  | >(tri_gt ???? … Hid)
-    lapply (transitive_lt … Hjd Hid) -d #H #H0 destruct
-    elim (plus_lt_false … H)
-  ]
-| #b #T #H destruct
-| #b #V #T #H destruct
-]
-qed.
-
-lemma slift_inv_vref_ge: ∀b0,j,d. d ≤ j → ∀h,E. ↑[d, h] E = {b0}#j →
-                         d + h ≤ j ∧ E = {b0}#(j-h).
-#b0 #j #d #Hdj #h * normalize
-[ #b #i elim (lt_or_eq_or_gt i d) #Hid
-  [ >(tri_lt ???? … Hid) #H destruct
-    lapply (le_to_lt_to_lt … Hdj Hid) -Hdj -Hid #H
-    elim (lt_refl_false … H)
-  | #H -Hdj destruct /2 width=1/
-  | >(tri_gt ???? … Hid) #H -Hdj destruct /4 width=1/
-  ]
-| #b #T #H destruct
-| #b #V #T #H destruct
-]
-qed-.
-
-lemma slift_inv_vref_be: ∀b0,j,d,h. d ≤ j → j < d + h → ∀E. ↑[d, h] E = {b0}#j → ⊥.
-#b0 #j #d #h #Hdj #Hjdh #E #H elim (slift_inv_vref_ge … H) -H // -Hdj #Hdhj #_ -E
-lapply (lt_to_le_to_lt … Hjdh Hdhj) -d -h #H
-elim (lt_refl_false … H)
-qed-.
-
-lemma slift_inv_vref_ge_plus: ∀b0,j,d,h. d + h ≤ j →
-                              ∀E. ↑[d, h] E = {b0}#j → E = {b0}#(j-h).
-#b0 #j #d #h #Hdhj #E #H elim (slift_inv_vref_ge … H) -H // -E /2 width=2/
-qed.
-
-lemma slift_inv_abst: ∀b0,U,d,h,E. ↑[d, h] E = {b0}𝛌.U →
-                      ∃∃T. ↑[d+1, h] T = U & E = {b0}𝛌.T.
-#b0 #U #d #h * normalize
-[ #b #i #H destruct
-| #b #T #H destruct /2 width=3/
-| #b #V #T #H destruct
-]
-qed-.
-
-lemma slift_inv_appl: ∀b0,W,U,d,h,E. ↑[d, h] E = {b0}@W.U →
-                      ∃∃V,T. ↑[d, h] V = W & ↑[d, h] T = U & E = {b0}@V.T.
-#b0 #W #U #d #h * normalize
-[ #b #i #H destruct
-| #b #T #H destruct
-| #b #V #T #H destruct /2 width=5/
-]
-qed-.
-
-theorem slift_slift_le: ∀h1,h2,E,d1,d2. d2 ≤ d1 →
-                        ↑[d2, h2] ↑[d1, h1] E = ↑[d1 + h2, h1] ↑[d2, h2] E.
-#h1 #h2 #E elim E -E
-[ #b #i #d1 #d2 #Hd21 elim (lt_or_ge i d2) #Hid2
-  [ lapply (lt_to_le_to_lt … Hid2 Hd21) -Hd21 #Hid1
-    >(slift_vref_lt … Hid1) >(slift_vref_lt … Hid2)
-    >slift_vref_lt // /2 width=1/
-  | >(slift_vref_ge … Hid2) elim (lt_or_ge i d1) #Hid1
-    [ >(slift_vref_lt … Hid1) >(slift_vref_ge … Hid2)
-      >slift_vref_lt // -d2 /2 width=1/
-    | >(slift_vref_ge … Hid1) >slift_vref_ge /2 width=1/
-      >slift_vref_ge // /2 width=1/
-    ]
-  ]
-| normalize #b #T #IHT #d1 #d2 #Hd21 >IHT // /2 width=1/
-| normalize #b #V #T #IHV #IHT #d1 #d2 #Hd21 >IHV >IHT //
-]
-qed.
-
-theorem slift_slift_be: ∀h1,h2,E,d1,d2. d1 ≤ d2 → d2 ≤ d1 + h1 →
-                        ↑[d2, h2] ↑[d1, h1] E = ↑[d1, h1 + h2] E.
-#h1 #h2 #E elim E -E
-[ #b #i #d1 #d2 #Hd12 #Hd21 elim (lt_or_ge i d1) #Hid1
-  [ lapply (lt_to_le_to_lt … Hid1 Hd12) -Hd12 -Hd21 #Hid2
-    >(slift_vref_lt … Hid1) >(slift_vref_lt … Hid1) /2 width=1/
-  | lapply (transitive_le … (i+h1) Hd21 ?) -Hd21 -Hd12 /2 width=1/ #Hd2
-    >(slift_vref_ge … Hid1) >(slift_vref_ge … Hid1) /2 width=1/
-  ]
-| normalize #b #T #IHT #d1 #d2 #Hd12 #Hd21 >IHT // /2 width=1/
-| normalize #b #V #T #IHV #IHT #d1 #d2 #Hd12 #Hd21 >IHV >IHT //
-]
-qed.
-
-theorem slift_slift_ge: ∀h1,h2,E,d1,d2. d1 + h1 ≤ d2 →
-                        ↑[d2, h2] ↑[d1, h1] E = ↑[d1, h1] ↑[d2 - h1, h2] E.
-#h1 #h2 #E #d1 #d2 #Hd12
->(slift_slift_le h2 h1) /2 width=1/ <plus_minus_m_m // /2 width=2/
-qed.
-
-(* Note: this is "∀h,d. injective … (slift h d)" *)
-theorem slift_inj: ∀h,E1,E2,d. ↑[d, h] E2 = ↑[d, h] E1 → E2 = E1.
-#h #E1 elim E1 -E1
-[ #b #i #E2 #d #H elim (lt_or_ge i d) #Hid
-  [ >(slift_vref_lt … Hid) in H; #H
-    >(slift_inv_vref_lt … Hid … H) -E2 -d -h //
-  | >(slift_vref_ge … Hid) in H; #H
-    >(slift_inv_vref_ge_plus … H) -E2 // /2 width=1/
-  ]
-| normalize #b #T1 #IHT1 #E2 #d #H
-  elim (slift_inv_abst … H) -H #T2 #HT12 #H destruct
-  >(IHT1 … HT12) -IHT1 -T2 //
-| normalize #b #V1 #T1 #IHV1 #IHT1 #E2 #d #H
-  elim (slift_inv_appl … H) -H #V2 #T2 #HV12 #HT12 #H destruct
-  >(IHV1 … HV12) -IHV1 -V2 >(IHT1 … HT12) -IHT1 -T2 //
-]
-qed-.
-
-theorem slift_inv_slift_le: ∀h1,h2,E1,E2,d1,d2. d2 ≤ d1 →
-                            ↑[d2, h2] E2 = ↑[d1 + h2, h1] E1 →
-                            ∃∃E. ↑[d1, h1] E = E2 & ↑[d2, h2] E = E1.
-#h1 #h2 #E1 elim E1 -E1
-[ #b #i #E2 #d1 #d2 #Hd21 elim (lt_or_ge i (d1+h2)) #Hid1
-  [ >(slift_vref_lt … Hid1) elim (lt_or_ge i d2) #Hid2 #H
-    [ lapply (lt_to_le_to_lt … Hid2 Hd21) -Hd21 -Hid1 #Hid1
-      >(slift_inv_vref_lt … Hid2 … H) -E2 /3 width=3/
-    | elim (slift_inv_vref_ge … H) -H -Hd21 // -Hid2 #Hdh2i #H destruct
-      elim (le_inv_plus_l … Hdh2i) -Hdh2i #Hd2i #Hh2i
-      @(ex2_intro … ({b}#(i-h2))) [ /4 width=1/ ] -Hid1
-      >slift_vref_ge // -Hd2i /3 width=1/ (**) (* auto: needs some help here *)
-    ]
-  | elim (le_inv_plus_l … Hid1) #Hd1i #Hh2i
-    lapply (transitive_le (d2+h2) … Hid1) /2 width=1/ -Hd21 #Hdh2i
-    elim (le_inv_plus_l … Hdh2i) #Hd2i #_
-    >(slift_vref_ge … Hid1) #H -Hid1
-    >(slift_inv_vref_ge_plus … H) -H /2 width=3/ -Hdh2i
-    @(ex2_intro … ({b}#(i-h2))) (**) (* auto: needs some help here *)
-    [ >slift_vref_ge // -Hd1i /3 width=1/
-    | >slift_vref_ge // -Hd2i -Hd1i /3 width=1/
-    ]
-  ]
-| normalize #b #T1 #IHT1 #E2 #d1 #d2 #Hd21 #H
-  elim (slift_inv_abst … H) -H >plus_plus_comm_23 #T2 #HT12 #H destruct
-  elim (IHT1 … HT12) -IHT1 -HT12 /2 width=1/ -Hd21 #T #HT2 #HT1
-  @(ex2_intro … ({b}𝛌.T)) normalize //
-| normalize #b #V1 #T1 #IHV1 #IHT1 #E2 #d1 #d2 #Hd21 #H
-  elim (slift_inv_appl … H) -H #V2 #T2 #HV12 #HT12 #H destruct
-  elim (IHV1 … HV12) -IHV1 -HV12 // #V #HV2 #HV1
-  elim (IHT1 … HT12) -IHT1 -HT12 // -Hd21 #T #HT2 #HT1
-  @(ex2_intro … ({b}@V.T)) normalize //
-]
-qed-.
-
-theorem slift_inv_slift_be: ∀h1,h2,E1,E2,d1,d2. d1 ≤ d2 → d2 ≤ d1 + h1 →
-                            ↑[d2, h2] E2 = ↑[d1, h1 + h2] E1 → ↑[d1, h1] E1 = E2.
-#h1 #h2 #E1 elim E1 -E1
-[ #b #i #E2 #d1 #d2 #Hd12 #Hd21 elim (lt_or_ge i d1) #Hid1
-  [ lapply (lt_to_le_to_lt … Hid1 Hd12) -Hd12 -Hd21 #Hid2
-    >(slift_vref_lt … Hid1) #H >(slift_inv_vref_lt … Hid2 … H) -h2 -E2 -d2 /2 width=1/
-  | lapply (transitive_le … (i+h1) Hd21 ?) -Hd12 -Hd21 /2 width=1/ #Hd2
-    >(slift_vref_ge … Hid1) #H >(slift_inv_vref_ge_plus … H) -E2 /2 width=1/
-  ]
-| normalize #b #T1 #IHT1 #E2 #d1 #d2 #Hd12 #Hd21 #H
-  elim (slift_inv_abst … H) -H #T #HT12 #H destruct
-  >(IHT1 … HT12) -IHT1 -HT12 // /2 width=1/
-| normalize #b #V1 #T1 #IHV1 #IHT1 #E2 #d1 #d2 #Hd12 #Hd21 #H
-  elim (slift_inv_appl … H) -H #V #T #HV12 #HT12 #H destruct
-  >(IHV1 … HV12) -IHV1 -HV12 // >(IHT1 … HT12) -IHT1 -HT12 //
-]
-qed-.
-
-theorem slift_inv_slift_ge: ∀h1,h2,E1,E2,d1,d2. d1 + h1 ≤ d2 →
-                            ↑[d2, h2] E2 = ↑[d1, h1] E1 →
-                            ∃∃E. ↑[d1, h1] E = E2 & ↑[d2 - h1, h2] E = E1.
-#h1 #h2 #E1 #E2 #d1 #d2 #Hd12 #H
-elim (le_inv_plus_l … Hd12) -Hd12 #Hd12 #Hh1d2
-lapply (sym_eq subterms … H) -H >(plus_minus_m_m … Hh1d2) in ⊢ (???%→?); -Hh1d2 #H
-elim (slift_inv_slift_le … Hd12 … H) -H -Hd12 /2 width=3/
-qed-.
-
-definition sliftable: predicate (relation subterms) ≝ λR.
-                      ∀h,F1,F2. R F1 F2 → ∀d. R (↑[d, h] F1) (↑[d, h] F2).
-
-definition sdeliftable_sn: predicate (relation subterms) ≝ λR.
-                           ∀h,G1,G2. R G1 G2 → ∀d,F1. ↑[d, h] F1 = G1 →
-                           ∃∃F2. R F1 F2 & ↑[d, h] F2 = G2.
-(*
-lemma star_sliftable: ∀R. sliftable R → sliftable (star … R).
-#R #HR #h #F1 #F2 #H elim H -F2 // /3 width=3/
-qed.
-
-lemma star_deliftable_sn: ∀R. sdeliftable_sn R → sdeliftable_sn (star … R).
-#R #HR #h #G1 #G2 #H elim H -G2 /2 width=3/
-#G #G2 #_ #HG2 #IHG1 #d #F1 #HFG1
-elim (IHG1 … HFG1) -G1 #F #HF1 #HFG
-elim (HR … HG2 … HFG) -G /3 width=3/
-qed-.
-
-lemma lstar_sliftable: ∀S,R. (∀a. sliftable (R a)) →
-                       ∀l. sliftable (lstar S … R l).
-#S #R #HR #l #h #F1 #F2 #H
-@(lstar_ind_l ????????? H) -l -F1 // /3 width=3/
-qed.
-
-lemma lstar_sdeliftable_sn: ∀S,R. (∀a. sdeliftable_sn (R a)) →
-                            ∀l. sdeliftable_sn (lstar S … R l).
-#S #R #HR #l #h #G1 #G2 #H
-@(lstar_ind_l ????????? H) -l -G1 /2 width=3/
-#a #l #G1 #G #HG1 #_ #IHG2 #d #F1 #HFG1
-elim (HR … HG1 … HFG1) -G1 #F #HF1 #HFG
-elim (IHG2 … HFG) -G /3 width=3/
-qed-.
-*)