(* Advanced propreties on context-sensitive extended normalizing terms ******)
lemma csx_fsb_fpbs: ∀h,g,G1,L1,T1. ⦃G1, L1⦄ ⊢ ⬊*[h, g] T1 →
- â\88\80G2,L2,T2. â¦\83G1, L1, T1â¦\84 â\89¥[h, g] â¦\83G2, L2, T2â¦\84 â\86\92 â¦\83G2, L2â¦\84 â\8a¢ ⦥[h, g] T2.
+ â\88\80G2,L2,T2. â¦\83G1, L1, T1â¦\84 â\89¥[h, g] â¦\83G2, L2, T2â¦\84 â\86\92 ⦥[h, g] â¦\83G2, L2, T2â¦\84.
#h #g #G1 #L1 #T1 #H @(csx_ind … H) -T1
#T1 #HT1 #IHc #G2 #L2 #T2 @(fqup_wf_ind … G2 L2 T2) -G2 -L2 -T2
#G0 #L0 #T0 #IHu #H10 lapply (csx_fpbs_conf … H10) // -HT1
]
qed.
-lemma csx_fsb: â\88\80h,g,G,L,T. â¦\83G, Lâ¦\84 â\8a¢ â¬\8a*[h, g] T â\86\92 â¦\83G, Lâ¦\84 â\8a¢ ⦥[h, g] T.
+lemma csx_fsb: â\88\80h,g,G,L,T. â¦\83G, Lâ¦\84 â\8a¢ â¬\8a*[h, g] T â\86\92 ⦥[h, g] â¦\83G, L, Tâ¦\84.
/2 width=5 by csx_fsb_fpbs/ qed.
(* Advanced eliminators *****************************************************)
-lemma csx_ind_fpbu: ∀h,g. ∀R:relation3 genv lenv term.
- (∀G1,L1,T1. ⦃G1, L1⦄ ⊢ ⬊*[h, g] T1 →
- (∀G2,L2,T2. ⦃G1, L1, T1⦄ ≻[h, g] ⦃G2, L2, T2⦄ → R G2 L2 T2) →
- R G1 L1 T1
- ) →
- ∀G,L,T. ⦃G, L⦄ ⊢ ⬊*[h, g] T → R G L T.
+lemma csx_ind_fpb: ∀h,g. ∀R:relation3 genv lenv term.
+ (∀G1,L1,T1. ⦃G1, L1⦄ ⊢ ⬊*[h, g] T1 →
+ (∀G2,L2,T2. ⦃G1, L1, T1⦄ ≻[h, g] ⦃G2, L2, T2⦄ → R G2 L2 T2) →
+ R G1 L1 T1
+ ) →
+ ∀G,L,T. ⦃G, L⦄ ⊢ ⬊*[h, g] T → R G L T.
/4 width=4 by fsb_inv_csx, csx_fsb, fsb_ind_alt/ qed-.
lemma csx_ind_fpbg: ∀h,g. ∀R:relation3 genv lenv term.