]> matita.cs.unibo.it Git - helm.git/blobdiff - matita/matita/contribs/lambdadelta/basic_2/etc/sta/sta.etc
update in basic_2 ...
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / etc / sta / sta.etc
index 20302c623c9be9ac68662cced346494be14ac3eb..fc6bf6a2acfd71a475c43db5c934902a3cf023e3 100644 (file)
 (*                                                                        *)
 (**************************************************************************)
 
-include "basic_2/substitution/ldrop.ma".
+include "basic_2/notation/relations/statictype_5.ma".
+include "basic_2/grammar/genv.ma".
+include "basic_2/substitution/drop.ma".
 include "basic_2/static/sh.ma".
 
 (* STATIC TYPE ASSIGNMENT ON TERMS ******************************************)
 
-inductive sta (h:sh): lenv → relation term ≝
-| sta_sort: ∀L,k. sta h L (⋆k) (⋆(next h k))
-| sta_ldef: ∀L,K,V,W,U,i. ⇩[0, i] L ≡ K. ⓓV → sta h K V W →
-            ⇧[0, i + 1] W ≡ U → sta h L (#i) U
-| sta_ldec: ∀L,K,W,V,U,i. ⇩[0, i] L ≡ K. ⓛW → sta h K W V →
-            ⇧[0, i + 1] W ≡ U → sta h L (#i) U
-| sta_bind: ∀I,L,V,T,U. sta h (L. ⓑ{I} V) T U →
-            sta h L (ⓑ{I}V.T) (ⓑ{I}V.U)
-| sta_appl: ∀L,V,T,U. sta h L T U →
-            sta h L (ⓐV.T) (ⓐV.U)
-| sta_cast: ∀L,W,T,U. sta h L T U → sta h L (ⓝW. T) U
+(* activate genv *)
+inductive sta (h:sh): relation4 genv lenv term term ≝
+| sta_sort: ∀G,L,k. sta h G L (⋆k) (⋆(next h k))
+| sta_ldef: ∀G,L,K,V,W,U,i. ⇩[i] L ≡ K.ⓓV → sta h G K V W →
+            ⇧[0, i + 1] W ≡ U → sta h G L (#i) U
+| sta_ldec: ∀G,L,K,W,V,U,i. ⇩[i] L ≡ K.ⓛW → sta h G K W V →
+            ⇧[0, i + 1] W ≡ U → sta h G L (#i) U
+| sta_bind: ∀a,I,G,L,V,T,U. sta h G (L.ⓑ{I}V) T U →
+            sta h G L (ⓑ{a,I}V.T) (ⓑ{a,I}V.U)
+| sta_appl: ∀G,L,V,T,U. sta h G L T U → sta h G L (ⓐV.T) (ⓐV.U)
+| sta_cast: ∀G,L,W,T,U. sta h G L T U → sta h G L (ⓝW.T) U
 .
 
 interpretation "static type assignment (term)"
-   'StaticType h L T U = (sta h L T U).
+   'StaticType h G L T U = (sta h G L T U).
 
 (* Basic inversion lemmas ************************************************)
 
-fact sta_inv_sort1_aux: ∀h,L,T,U. ⦃h, L⦄ ⊢ T • U → ∀k0. T = ⋆k0 →
+fact sta_inv_sort1_aux: ∀h,G,L,T,U. ⦃G, L⦄ ⊢ T •[h] U → ∀k0. T = ⋆k0 →
                         U = ⋆(next h k0).
-#h #L #T #U * -L -T -U
-[ #L #k #k0 #H destruct //
-| #L #K #V #W #U #i #_ #_ #_ #k0 #H destruct
-| #L #K #W #V #U #i #_ #_ #_ #k0 #H destruct
-| #I #L #V #T #U #_ #k0 #H destruct
-| #L #V #T #U #_ #k0 #H destruct
-| #L #W #T #U #_ #k0 #H destruct
-qed.
+#h #G #L #T #U * -G -L -T -U
+[ #G #L #k #k0 #H destruct //
+| #G #L #K #V #W #U #i #_ #_ #_ #k0 #H destruct
+| #G #L #K #W #V #U #i #_ #_ #_ #k0 #H destruct
+| #a #I #G #L #V #T #U #_ #k0 #H destruct
+| #G #L #V #T #U #_ #k0 #H destruct
+| #G #L #W #T #U #_ #k0 #H destruct
+qed-.
 
 (* Basic_1: was: sty0_gen_sort *)
-lemma sta_inv_sort1: ∀h,L,U,k. ⦃h, L⦄ ⊢ ⋆k • U → U = ⋆(next h k).
-/2 width=4/ qed-.
+lemma sta_inv_sort1: ∀h,G,L,U,k. ⦃G, L⦄ ⊢ ⋆k •[h] U → U = ⋆(next h k).
+/2 width=5 by sta_inv_sort1_aux/ qed-.
 
-fact sta_inv_lref1_aux: ∀h,L,T,U. ⦃h, L⦄ ⊢ T • U → ∀j. T = #j →
-                        (∃∃K,V,W. ⇩[0, j] L ≡ K. ⓓV & ⦃h, K⦄ ⊢ V • W &
-                                  ⇧[0, j + 1] W ≡ U
+fact sta_inv_lref1_aux: ∀h,G,L,T,U. ⦃G, L⦄ ⊢ T •[h] U → ∀j. T = #j →
+                        (∃∃K,V,W. ⇩[j] L ≡ K.ⓓV & ⦃G, K⦄ ⊢ V •[h] W &
+                                  ⇧[0, j+1] W ≡ U
                         ) ∨
-                        (∃∃K,W,V. ⇩[0, j] L ≡ K. ⓛW & ⦃h, K⦄ ⊢ W • V &
-                                  ⇧[0, j + 1] W ≡ U
+                        (∃∃K,W,V. ⇩[j] L ≡ K.ⓛW & ⦃G, K⦄ ⊢ W •[h] V &
+                                  ⇧[0, j+1] W ≡ U
                         ).
-#h #L #T #U * -L -T -U
-[ #L #k #j #H destruct
-| #L #K #V #W #U #i #HLK #HVW #HWU #j #H destruct /3 width=6/
-| #L #K #W #V #U #i #HLK #HWV #HWU #j #H destruct /3 width=6/
-| #I #L #V #T #U #_ #j #H destruct
-| #L #V #T #U #_ #j #H destruct
-| #L #W #T #U #_ #j #H destruct
+#h #G #L #T #U * -G -L -T -U
+[ #G #L #k #j #H destruct
+| #G #L #K #V #W #U #i #HLK #HVW #HWU #j #H destruct /3 width=6 by or_introl, ex3_3_intro/
+| #G #L #K #W #V #U #i #HLK #HWV #HWU #j #H destruct /3 width=6 by or_intror, ex3_3_intro/
+| #a #I #G #L #V #T #U #_ #j #H destruct
+| #G #L #V #T #U #_ #j #H destruct
+| #G #L #W #T #U #_ #j #H destruct
 ]
-qed.
+qed-.
 
 (* Basic_1: was sty0_gen_lref *)
-lemma sta_inv_lref1: ∀h,L,U,i. ⦃h, L⦄ ⊢ #i • U →
-                     (∃∃K,V,W. ⇩[0, i] L ≡ K. ⓓV & ⦃h, K⦄ ⊢ V • W &
-                               ⇧[0, i + 1] W ≡ U
+lemma sta_inv_lref1: ∀h,G,L,U,i. ⦃G, L⦄ ⊢ #i •[h] U →
+                     (∃∃K,V,W. ⇩[i] L ≡ K.ⓓV & ⦃G, K⦄ ⊢ V •[h] W &
+                               ⇧[0, i+1] W ≡ U
                      ) ∨
-                     (∃∃K,W,V. ⇩[0, i] L ≡ K. ⓛW & ⦃h, K⦄ ⊢ W • V &
-                               ⇧[0, i + 1] W ≡ U
+                     (∃∃K,W,V. ⇩[i] L ≡ K.ⓛW & ⦃G, K⦄ ⊢ W •[h] V &
+                               ⇧[0, i+1] W ≡ U
                      ).
-/2 width=3/ qed-.
-
-fact sta_inv_bind1_aux: ∀h,L,T,U. ⦃h, L⦄ ⊢ T • U → ∀J,X,Y. T = ⓑ{J}Y.X →
-                        ∃∃Z. ⦃h, L.ⓑ{J}Y⦄ ⊢ X • Z & U = ⓑ{J}Y.Z.
-#h #L #T #U * -L -T -U
-[ #L #k #J #X #Y #H destruct
-| #L #K #V #W #U #i #_ #_ #_ #J #X #Y #H destruct
-| #L #K #W #V #U #i #_ #_ #_ #J #X #Y #H destruct
-| #I #L #V #T #U #HTU #J #X #Y #H destruct /2 width=3/
-| #L #V #T #U #_ #J #X #Y #H destruct
-| #L #W #T #U #_ #J #X #Y #H destruct
+/2 width=3 by sta_inv_lref1_aux/ qed-.
+
+fact sta_inv_gref1_aux: ∀h,G,L,T,U. ⦃G, L⦄ ⊢ T •[h] U → ∀p0. T = §p0 → ⊥.
+#h #G #L #T #U * -G -L -T -U
+[ #G #L #k #p0 #H destruct
+| #G #L #K #V #W #U #i #_ #_ #_ #p0 #H destruct
+| #G #L #K #W #V #U #i #_ #_ #_ #p0 #H destruct
+| #a #I #G #L #V #T #U #_ #p0 #H destruct
+| #G #L #V #T #U #_ #p0 #H destruct
+| #G #L #W #T #U #_ #p0 #H destruct
+qed-.
+
+lemma sta_inv_gref1: ∀h,G,L,U,p. ⦃G, L⦄ ⊢ §p •[h] U → ⊥.
+/2 width=8 by sta_inv_gref1_aux/ qed-.
+
+fact sta_inv_bind1_aux: ∀h,G,L,T,U. ⦃G, L⦄ ⊢ T •[h] U → ∀b,J,X,Y. T = ⓑ{b,J}Y.X →
+                        ∃∃Z. ⦃G, L.ⓑ{J}Y⦄ ⊢ X •[h] Z & U = ⓑ{b,J}Y.Z.
+#h #G #L #T #U * -G -L -T -U
+[ #G #L #k #b #J #X #Y #H destruct
+| #G #L #K #V #W #U #i #_ #_ #_ #b #J #X #Y #H destruct
+| #G #L #K #W #V #U #i #_ #_ #_ #b #J #X #Y #H destruct
+| #a #I #G #L #V #T #U #HTU #b #J #X #Y #H destruct /2 width=3 by ex2_intro/
+| #G #L #V #T #U #_ #b #J #X #Y #H destruct
+| #G #L #W #T #U #_ #b #J #X #Y #H destruct
 ]
-qed.
+qed-.
 
 (* Basic_1: was: sty0_gen_bind *)
-lemma sta_inv_bind1: ∀h,J,L,Y,X,U. ⦃h, L⦄ ⊢ ⓑ{J}Y.X • U →
-                     ∃∃Z. ⦃h, L.ⓑ{J}Y⦄ ⊢ X • Z & U = ⓑ{J}Y.Z.
-/2 width=3/ qed-.
-
-fact sta_inv_appl1_aux: ∀h,L,T,U. ⦃h, L⦄ ⊢ T • U → ∀X,Y. T = ⓐY.X →
-                        ∃∃Z. ⦃h, L⦄ ⊢ X • Z & U = ⓐY.Z.
-#h #L #T #U * -L -T -U
-[ #L #k #X #Y #H destruct
-| #L #K #V #W #U #i #_ #_ #_ #X #Y #H destruct
-| #L #K #W #V #U #i #_ #_ #_ #X #Y #H destruct
-| #I #L #V #T #U #_ #X #Y #H destruct
-| #L #V #T #U #HTU #X #Y #H destruct /2 width=3/
-| #L #W #T #U #_ #X #Y #H destruct
+lemma sta_inv_bind1: ∀h,b,J,G,L,Y,X,U. ⦃G, L⦄ ⊢ ⓑ{b,J}Y.X •[h] U →
+                     ∃∃Z. ⦃G, L.ⓑ{J}Y⦄ ⊢ X •[h] Z & U = ⓑ{b,J}Y.Z.
+/2 width=3 by sta_inv_bind1_aux/ qed-.
+
+fact sta_inv_appl1_aux: ∀h,G,L,T,U. ⦃G, L⦄ ⊢ T •[h] U → ∀X,Y. T = ⓐY.X →
+                        ∃∃Z. ⦃G, L⦄ ⊢ X •[h] Z & U = ⓐY.Z.
+#h #G #L #T #U * -G -L -T -U
+[ #G #L #k #X #Y #H destruct
+| #G #L #K #V #W #U #i #_ #_ #_ #X #Y #H destruct
+| #G #L #K #W #V #U #i #_ #_ #_ #X #Y #H destruct
+| #a #I #G #L #V #T #U #_ #X #Y #H destruct
+| #G #L #V #T #U #HTU #X #Y #H destruct /2 width=3 by ex2_intro/
+| #G #L #W #T #U #_ #X #Y #H destruct
 ]
-qed.
+qed-.
 
 (* Basic_1: was: sty0_gen_appl *)
-lemma sta_inv_appl1: ∀h,L,Y,X,U. ⦃h, L⦄ ⊢ ⓐY.X • U →
-                     ∃∃Z. ⦃h, L⦄ ⊢ X • Z & U = ⓐY.Z.
-/2 width=3/ qed-.
-
-fact sta_inv_cast1_aux: ∀h,L,T,U. ⦃h, L⦄ ⊢ T • U → ∀X,Y. T = ⓝY.X →
-                     ⦃h, L⦄ ⊢ X • U.
-#h #L #T #U * -L -T -U
-[ #L #k #X #Y #H destruct
-| #L #K #V #W #U #i #_ #_ #_ #X #Y #H destruct
-| #L #K #W #V #U #i #_ #_ #_ #X #Y #H destruct
-| #I #L #V #T #U #_ #X #Y #H destruct
-| #L #V #T #U #_ #X #Y #H destruct
-| #L #W #T #U #HTU #X #Y #H destruct //
+lemma sta_inv_appl1: ∀h,G,L,Y,X,U. ⦃G, L⦄ ⊢ ⓐY.X •[h] U →
+                     ∃∃Z. ⦃G, L⦄ ⊢ X •[h] Z & U = ⓐY.Z.
+/2 width=3 by sta_inv_appl1_aux/ qed-.
+
+fact sta_inv_cast1_aux: ∀h,G,L,T,U. ⦃G, L⦄ ⊢ T •[h] U → ∀X,Y. T = ⓝY.X →
+                     ⦃G, L⦄ ⊢ X •[h] U.
+#h #G #L #T #U * -G -L -T -U
+[ #G #L #k #X #Y #H destruct
+| #G #L #K #V #W #U #i #_ #_ #_ #X #Y #H destruct
+| #G #L #K #W #V #U #i #_ #_ #_ #X #Y #H destruct
+| #a #I #G #L #V #T #U #_ #X #Y #H destruct
+| #G #L #V #T #U #_ #X #Y #H destruct
+| #G #L #W #T #U #HTU #X #Y #H destruct //
 ]
-qed.
+qed-.
 
 (* Basic_1: was: sty0_gen_cast *)
-lemma sta_inv_cast1: ∀h,L,X,Y,U. ⦃h, L⦄ ⊢ ⓝY.X • U →  ⦃h, L⦄ ⊢ X • U.
-/2 width=4/ qed-.
+lemma sta_inv_cast1: ∀h,G,L,X,Y,U. ⦃G, L⦄ ⊢ ⓝY.X •[h] U → ⦃G, L⦄ ⊢ X •[h] U.
+/2 width=4 by sta_inv_cast1_aux/ qed-.