]> matita.cs.unibo.it Git - helm.git/blobdiff - matita/matita/contribs/lambdadelta/ground/arith/pnat_le.ma
propagating the arithmetics library, partial commit
[helm.git] / matita / matita / contribs / lambdadelta / ground / arith / pnat_le.ma
diff --git a/matita/matita/contribs/lambdadelta/ground/arith/pnat_le.ma b/matita/matita/contribs/lambdadelta/ground/arith/pnat_le.ma
new file mode 100644 (file)
index 0000000..e33853b
--- /dev/null
@@ -0,0 +1,119 @@
+(**************************************************************************)
+(*       ___                                                              *)
+(*      ||M||                                                             *)
+(*      ||A||       A project by Andrea Asperti                           *)
+(*      ||T||                                                             *)
+(*      ||I||       Developers:                                           *)
+(*      ||T||         The HELM team.                                      *)
+(*      ||A||         http://helm.cs.unibo.it                             *)
+(*      \   /                                                             *)
+(*       \ /        This file is distributed under the terms of the       *)
+(*        v         GNU General Public License Version 2                  *)
+(*                                                                        *)
+(**************************************************************************)
+
+include "ground/generated/insert_eq_1.ma".
+include "ground/arith/pnat.ma".
+
+(* ORDER FOR POSITIVE INTEGERS **********************************************)
+
+inductive ple (p:pnat): predicate pnat ≝
+| ple_refl   : ple p p
+| ple_succ_dx: ∀q. ple p q → ple p (↑q)
+.
+
+interpretation
+  "less equal (positive integers)"
+  'leq p q = (ple p q).
+
+(* Basic constructions ******************************************************)
+
+lemma ple_succ_dx_refl (p): p ≤ ↑p.
+/2 width=1 by ple_refl, ple_succ_dx/ qed.
+
+lemma ple_unit_sx (p): 𝟏 ≤ p.
+#p elim p -p /2 width=1 by ple_succ_dx/
+qed.
+
+lemma ple_succ_bi (p) (q): p ≤ q → ↑p ≤ ↑q.
+#p #q #H elim H -q /2 width=1 by ple_refl, ple_succ_dx/
+qed.
+
+lemma pnat_split_le_ge (p) (q): ∨∨ p ≤ q | q ≤ p.
+#p #q @(pnat_ind_2 … p q) -p -q
+[ /2 width=1 by or_introl/
+| /2 width=1 by or_intror/
+| #p #q * /3 width=2 by ple_succ_bi, or_introl, or_intror/
+]
+qed-.
+
+(* Basic destructions *******************************************************)
+
+lemma ple_des_succ_sn (p) (q): ↑p ≤ q → p ≤ q.
+#p #q #H elim H -q /2 width=1 by ple_succ_dx/
+qed-.
+
+(* Basic inversions *********************************************************)
+
+lemma ple_inv_succ_bi (p) (q): ↑p ≤ ↑q → p ≤ q.
+#p #q @(insert_eq_1 … (↑q))
+#x * -x
+[ #H destruct //
+| #o #Ho #H destruct
+  /2 width=1 by ple_des_succ_sn/ 
+]
+qed-.
+
+lemma ple_inv_unit_dx (p): p ≤ 𝟏 → 𝟏 = p.
+#p @(insert_eq_1 … (𝟏))
+#y * -y
+[ #H destruct //
+| #y #_ #H destruct
+]
+qed-.
+
+(* Advanced inversions ******************************************************)
+
+lemma ple_inv_succ_unit (p): ↑p ≤ 𝟏 → ⊥.
+#p #H
+lapply (ple_inv_unit_dx … H) -H #H destruct
+qed-.
+
+lemma ple_inv_succ_sn_refl (p): ↑p ≤ p → ⊥.
+#p elim p -p [| #p #IH ] #H
+[ /2 width=2 by ple_inv_succ_unit/
+| /3 width=1 by ple_inv_succ_bi/
+]
+qed-.
+
+theorem ple_antisym (p) (q): p ≤ q → q ≤ p → p = q.
+#p #q #H elim H -q //
+#q #_ #IH #Hq
+lapply (ple_des_succ_sn … Hq) #H
+lapply (IH H) -IH -H #H destruct
+elim (ple_inv_succ_sn_refl … Hq)
+qed-.
+
+(* Advanced eliminations ****************************************************)
+
+lemma ple_ind_alt (Q: relation2 pnat pnat):
+      (∀q. Q (𝟏) (q)) →
+      (∀p,q. p ≤ q → Q p q → Q (↑p) (↑q)) →
+      ∀p,q. p ≤ q → Q p q.
+#Q #IH1 #IH2 #p #q @(pnat_ind_2 … p q) -p -q //
+[ #p #_ #H elim (ple_inv_succ_unit … H)
+| /4 width=1 by ple_inv_succ_bi/
+]
+qed-.
+
+(* Advanced constructions ***************************************************)
+
+theorem ple_trans: Transitive … ple.
+#p #q #H elim H -q /3 width=1 by ple_des_succ_sn/
+qed-.
+
+lemma ple_dec (p) (q): Decidable … (p ≤ q).
+#p #q elim (pnat_split_le_ge p q) [ /2 width=1 by or_introl/ ]
+#Hqp elim (eq_pnat_dec p q) [ #H destruct /2 width=1 by ple_refl, or_introl/ ]
+/4 width=1 by ple_antisym, or_intror/
+qed-.