]> matita.cs.unibo.it Git - helm.git/blobdiff - matita/matita/contribs/lambdadelta/ground/etc/ynat/ynat_minus.etc
ground_2 released and permanently renamed as ground
[helm.git] / matita / matita / contribs / lambdadelta / ground / etc / ynat / ynat_minus.etc
diff --git a/matita/matita/contribs/lambdadelta/ground/etc/ynat/ynat_minus.etc b/matita/matita/contribs/lambdadelta/ground/etc/ynat/ynat_minus.etc
new file mode 100644 (file)
index 0000000..a2f15a8
--- /dev/null
@@ -0,0 +1,227 @@
+(**************************************************************************)
+(*       ___                                                              *)
+(*      ||M||                                                             *)
+(*      ||A||       A project by Andrea Asperti                           *)
+(*      ||T||                                                             *)
+(*      ||I||       Developers:                                           *)
+(*      ||T||         The HELM team.                                      *)
+(*      ||A||         http://helm.cs.unibo.it                             *)
+(*      \   /                                                             *)
+(*       \ /        This file is distributed under the terms of the       *)
+(*        v         GNU General Public License Version 2                  *)
+(*                                                                        *)
+(**************************************************************************)
+
+include "ground_2/ynat/ynat_lt.ma".
+
+(* NATURAL NUMBERS WITH INFINITY ********************************************)
+
+(* subtraction *)
+definition yminus: ynat → ynat → ynat ≝ λx,y. match y with
+[ yinj n ⇒ ypred^n x
+| Y      ⇒ yinj 0
+].
+
+interpretation "ynat minus" 'minus x y = (yminus x y).
+
+lemma yminus_O2: ∀m:ynat. m - 0 = m.
+// qed.
+
+lemma yminus_S2: ∀m:ynat. ∀n:nat. m - S n = ⫰(m - n).
+// qed.
+
+lemma yminus_Y2: ∀m. m - (∞) = 0.
+// qed.
+
+(* Basic properties *********************************************************)
+
+lemma yminus_inj: ∀m,n. yinj m - yinj n = yinj (m - n).
+#m #n elim n -n //
+#n #IH >yminus_S2 >IH -IH >eq_minus_S_pred //
+qed.
+
+lemma yminus_Y_inj: ∀n. ∞ - yinj n = ∞.
+#n elim n -n //
+qed.
+
+lemma yminus_O1: ∀x:ynat. 0 - x = 0.
+* // qed.
+
+lemma yminus_refl: ∀x:ynat. x - x = 0.
+* // qed.
+
+lemma yminus_minus_comm: ∀y,z,x. x - y - z = x - z - y.
+* #y [ * #z [ * // ] ] >yminus_O1 //
+qed.
+
+(* Properties on predecessor ************************************************)
+
+lemma yminus_SO2: ∀m. m - 1 = ⫰m.
+* //
+qed.
+
+lemma yminus_pred1: ∀x,y. ⫰x - y = ⫰(x-y).
+#x * // #y elim y -y //
+qed.
+
+lemma yminus_pred: ∀n,m. 0 < m → 0 < n → ⫰m - ⫰n = m - n.
+* // #n *
+[ #m #Hm #Hn >yminus_inj >yminus_inj
+  /4 width=1 by ylt_inv_inj, minus_pred_pred, eq_f/
+| >yminus_Y_inj //
+]
+qed-.
+
+(* Properties on successor **************************************************)
+
+lemma yminus_succ: ∀n,m. ⫯m - ⫯n = m - n.
+* // qed.
+
+lemma yminus_succ1_inj: ∀n:nat. ∀m:ynat. n ≤ m → ⫯m - n = ⫯(m - n).
+#n *
+[ #m #Hmn >yminus_inj >yminus_inj
+  /4 width=1 by yle_inv_inj, plus_minus, eq_f/
+| >yminus_Y_inj //
+]
+qed-.
+
+lemma yminus_succ2: ∀y,x. x - ⫯y = ⫰(x-y).
+* //
+qed.
+
+(* Properties on order ******************************************************)
+
+lemma yle_minus_sn: ∀n,m. m - n ≤ m.
+* // #n * /2 width=1 by yle_inj/
+qed.
+
+lemma yle_to_minus: ∀m:ynat. ∀n:ynat. m ≤ n → m - n = 0.
+#m #n * -m -n /3 width=3 by eq_minus_O, eq_f/
+qed-.
+
+lemma yminus_to_le: ∀n:ynat. ∀m:ynat. m - n = 0 → m ≤ n.
+* // #n *
+[ #m >yminus_inj #H lapply (yinj_inj … H) -H (**) (* destruct lemma needed *)
+  /2 width=1 by yle_inj/
+| >yminus_Y_inj #H destruct
+]
+qed.
+
+lemma monotonic_yle_minus_dx: ∀x,y. x ≤ y → ∀z. x - z ≤ y - z.
+#x #y #Hxy * //
+#z elim z -z /3 width=1 by yle_pred/
+qed.
+
+(* Properties on strict order ***********************************************)
+
+lemma ylt_to_minus: ∀x,y:ynat. x < y → 0 < y - x.
+#x #y #H elim H -x -y /3 width=1 by ylt_inj, lt_plus_to_minus_r/
+qed.
+
+lemma yminus_to_lt: ∀x,y:ynat. 0 < y - x → x < y.
+* [2: #y #H elim (ylt_yle_false … H) // ]
+#m * /4 width=1 by ylt_inv_inj, ylt_inj, lt_minus_to_plus_r/
+qed-.
+
+lemma monotonic_ylt_minus_dx: ∀x,y:ynat. x < y → ∀z:nat. z ≤ x → x - z < y - z.
+#x #y * -x -y
+/4 width=1 by ylt_inj, yle_inv_inj, monotonic_lt_minus_l/
+qed.
+
+(* Properties on minus ******************************************************)
+
+lemma yplus_minus_inj: ∀m:ynat. ∀n:nat. m + n - n = m.
+#m #n elim n -n //
+#n #IHn >(yplus_succ2 m n) >(yminus_succ … n) //
+qed.
+
+lemma yplus_minus: ∀m,n. m + n - n ≤ m.
+#m * //
+qed.
+
+lemma yminus_plus2: ∀z,y,x:ynat. x - (y + z) = x - y - z.
+* // #z * [2: >yplus_Y1 >yminus_O1 // ] #y *
+[ #x >yplus_inj >yminus_inj >yminus_inj >yminus_inj /2 width=1 by eq_f/
+| >yplus_inj >yminus_Y_inj //
+]
+qed.
+
+(* Forward lemmas on minus **************************************************)
+
+lemma yle_plus1_to_minus_inj2: ∀x,z:ynat. ∀y:nat. x + y ≤ z → x ≤ z - y.
+#x #z #y #H lapply (monotonic_yle_minus_dx … H y) -H //
+qed-.
+
+lemma yle_plus1_to_minus_inj1: ∀x,z:ynat. ∀y:nat. y + x ≤ z → x ≤ z - y.
+/2 width=1 by yle_plus1_to_minus_inj2/ qed-.
+
+lemma yle_plus2_to_minus_inj2: ∀x,y:ynat. ∀z:nat. x ≤ y + z → x - z ≤ y.
+/2 width=1 by monotonic_yle_minus_dx/ qed-.
+
+lemma yle_plus2_to_minus_inj1: ∀x,y:ynat. ∀z:nat. x ≤ z + y → x - z ≤ y.
+/2 width=1 by yle_plus2_to_minus_inj2/ qed-.
+
+lemma yplus_minus_assoc_inj: ∀x:nat. ∀y,z:ynat. x ≤ y → z + (y - x) = z + y - x.
+#x *
+[ #y * // #z >yminus_inj >yplus_inj >yplus_inj
+  /4 width=1 by yle_inv_inj, plus_minus, eq_f/
+| >yminus_Y_inj //
+]
+qed-.
+
+lemma yplus_minus_assoc_comm_inj: ∀x:nat. ∀y,z:ynat. x ≤ y → z - (y - x) = z + x - y.
+#x *
+[ #y *
+  [ #z >yminus_inj >yminus_inj >yplus_inj >yminus_inj
+    /4 width=1 by yle_inv_inj, minus_le_minus_minus_comm, eq_f/
+  | >yminus_inj >yminus_Y_inj //
+  ]
+| >yminus_Y_inj //
+]
+qed-.
+
+lemma yplus_minus_comm_inj: ∀y:nat. ∀x,z:ynat. y ≤ x → x + z - y = x - y + z.
+#y * // #x * //
+#z #Hxy >yplus_inj >yminus_inj <plus_minus
+/2 width=1 by yle_inv_inj/
+qed-.
+
+lemma ylt_plus1_to_minus_inj2: ∀x,z:ynat. ∀y:nat. x + y < z → x < z - y.
+#x #z #y #H lapply (monotonic_ylt_minus_dx … H y ?) -H //
+qed-.
+
+lemma ylt_plus1_to_minus_inj1: ∀x,z:ynat. ∀y:nat. y + x < z → x < z - y.
+/2 width=1 by ylt_plus1_to_minus_inj2/ qed-.
+
+lemma ylt_plus2_to_minus_inj2: ∀x,y:ynat. ∀z:nat. z ≤ x → x < y + z → x - z < y.
+/2 width=1 by monotonic_ylt_minus_dx/ qed-.
+
+lemma ylt_plus2_to_minus_inj1: ∀x,y:ynat. ∀z:nat. z ≤ x → x < z + y → x - z < y.
+/2 width=1 by ylt_plus2_to_minus_inj2/ qed-.
+
+lemma yplus_inv_minus: ∀x1,y1. y1 ≤ yinj x1 →
+                       ∀x2,y2. yinj x1 + x2 = yinj y2 + y1 →
+                       yinj x1 - y1 = yinj y2 - x2 ∧ x2 ≤ yinj y2.
+#x1 #y1 #Hyx1 #x2 #y2 #H0
+lapply (yle_fwd_plus_ge_inj … x2 y2 Hyx1 ?) // #Hxy2
+elim (yle_inv_inj2 … Hyx1) -Hyx1 #m #Hyx1 #H destruct
+elim (yle_inv_inj2 … Hxy2) #n #H1 #H destruct
+>yplus_inj in H0; >yplus_inj >yminus_inj >yminus_inj #H0
+@conj // lapply (yinj_inj … H0) -H0 /3 width=1 by arith_b1, eq_f/
+qed-.
+
+(* Inversion lemmas on minus ************************************************)
+
+lemma yle_inv_plus_inj2: ∀x,z:ynat. ∀y:nat. x + y ≤ z → x ≤ z - y ∧ y ≤ z.
+/3 width=3 by yle_plus1_to_minus_inj2, yle_trans, conj/ qed-.
+
+lemma yle_inv_plus_inj1: ∀x,z:ynat. ∀y:nat. y + x ≤ z → x ≤ z - y ∧ y ≤ z.
+/2 width=1 by yle_inv_plus_inj2/ qed-.
+
+lemma yle_inv_plus_inj_dx: ∀x,y:ynat. ∀z:nat. x + y ≤ z →
+                           ∃∃m,n. x = yinj m & y = yinj n & x ≤ z - y & y ≤ z.
+#x #y #z #Hz elim (yle_inv_inj2 … Hz)
+#z0 #_ #H elim (yplus_inv_inj … H) -H
+#m #n #H1 #H2 #H3 destruct
+elim (yle_inv_plus_inj2 … Hz) -Hz /2 width=2 by ex4_2_intro/
+qed-.