]> matita.cs.unibo.it Git - helm.git/blobdiff - matita/matita/contribs/lambdadelta/ground/relocation/pstream_after.ma
propagating the arithmetics library, partial commit
[helm.git] / matita / matita / contribs / lambdadelta / ground / relocation / pstream_after.ma
diff --git a/matita/matita/contribs/lambdadelta/ground/relocation/pstream_after.ma b/matita/matita/contribs/lambdadelta/ground/relocation/pstream_after.ma
new file mode 100644 (file)
index 0000000..0aa4d6b
--- /dev/null
@@ -0,0 +1,166 @@
+(**************************************************************************)
+(*       ___                                                              *)
+(*      ||M||                                                             *)
+(*      ||A||       A project by Andrea Asperti                           *)
+(*      ||T||                                                             *)
+(*      ||I||       Developers:                                           *)
+(*      ||T||         The HELM team.                                      *)
+(*      ||A||         http://helm.cs.unibo.it                             *)
+(*      \   /                                                             *)
+(*       \ /        This file is distributed under the terms of the       *)
+(*        v         GNU General Public License Version 2                  *)
+(*                                                                        *)
+(**************************************************************************)
+
+include "ground/relocation/pstream_tls.ma".
+include "ground/relocation/pstream_istot.ma".
+include "ground/relocation/rtmap_after.ma".
+
+(* RELOCATION N-STREAM ******************************************************)
+
+corec definition compose: rtmap → rtmap → rtmap.
+#f2 * #p1 #f1 @(stream_cons … (f2@❨p1❩)) @(compose ? f1) -compose -f1
+@(⫰*[p1]f2)
+defined.
+
+interpretation "functional composition (nstream)"
+   'compose f2 f1 = (compose f2 f1).
+
+(* Basic properies on compose ***********************************************)
+
+lemma compose_rew: ∀f2,f1,p1. f2@❨p1❩⨮(⫰*[p1]f2)∘f1 = f2∘(p1⨮f1).
+#f2 #f1 #p1 <(stream_rew … (f2∘(p1⨮f1))) normalize //
+qed.
+
+lemma compose_next: ∀f2,f1,f. f2∘f1 = f → (↑f2)∘f1 = ↑f.
+#f2 * #p1 #f1 #f <compose_rew <compose_rew
+* -f /2 width=1 by eq_f2/
+qed.
+
+(* Basic inversion lemmas on compose ****************************************)
+
+lemma compose_inv_rew: ∀f2,f1,f,p1,p. f2∘(p1⨮f1) = p⨮f →
+                       f2@❨p1❩ = p ∧ (⫰*[p1]f2)∘f1 = f.
+#f2 #f1 #f #p1 #p <compose_rew
+#H destruct /2 width=1 by conj/
+qed-.
+
+lemma compose_inv_O2: ∀f2,f1,f,p2,p. (p2⨮f2)∘(⫯f1) = p⨮f →
+                      p2 = p ∧ f2∘f1 = f.
+#f2 #f1 #f #p2 #p <compose_rew
+#H destruct /2 width=1 by conj/
+qed-.
+
+lemma compose_inv_S2: ∀f2,f1,f,p2,p1,p. (p2⨮f2)∘(↑p1⨮f1) = p⨮f →
+                      f2@❨p1❩+p2 = p ∧ f2∘(p1⨮f1) = f2@❨p1❩⨮f.
+#f2 #f1 #f #p2 #p1 #p <compose_rew
+#H destruct >nsucc_inj <stream_tls_swap
+/2 width=1 by conj/
+qed-.
+
+lemma compose_inv_S1: ∀f2,f1,f,p1,p. (↑f2)∘(p1⨮f1) = p⨮f →
+                      ↑(f2@❨p1❩) = p ∧ f2∘(p1⨮f1) = f2@❨p1❩⨮f.
+#f2 #f1 #f #p1 #p <compose_rew
+#H destruct /2 width=1 by conj/
+qed-.
+
+(* Specific properties on after *********************************************)
+
+lemma after_O2: ∀f2,f1,f. f2 ⊚ f1 ≘ f →
+                ∀p. p⨮f2 ⊚ ⫯f1 ≘ p⨮f.
+#f2 #f1 #f #Hf #p elim p -p
+/2 width=7 by after_refl, after_next/
+qed.
+
+lemma after_S2: ∀f2,f1,f,p1,p. f2 ⊚ p1⨮f1 ≘ p⨮f →
+                ∀p2. p2⨮f2 ⊚ ↑p1⨮f1 ≘ (p+p2)⨮f.
+#f2 #f1 #f #p1 #p #Hf #p2 elim p2 -p2
+/2 width=7 by after_next, after_push/
+qed.
+
+lemma after_apply: ∀p1,f2,f1,f.
+      (⫰*[ninj p1] f2) ⊚ f1 ≘ f → f2 ⊚ p1⨮f1 ≘ f2@❨p1❩⨮f.
+#p1 elim p1 -p1
+[ * /2 width=1 by after_O2/
+| #p1 #IH * #p2 #f2 >nsucc_inj <stream_tls_swap
+  /3 width=1 by after_S2/
+]
+qed-.
+
+corec lemma after_total_aux: ∀f2,f1,f. f2 ∘ f1 = f → f2 ⊚ f1 ≘ f.
+* #p2 #f2 * #p1 #f1 * #p #f cases p2 -p2
+[ cases p1 -p1
+  [ #H cases (compose_inv_O2 … H) -H /3 width=7 by after_refl, eq_f2/
+  | #p1 #H cases (compose_inv_S2 … H) -H * -p /3 width=7 by after_push/
+  ]
+| #p2 >next_rew #H cases (compose_inv_S1 … H) -H * -p >next_rew
+  /3 width=5 by after_next/
+]
+qed-.
+
+theorem after_total: ∀f1,f2. f2 ⊚ f1 ≘ f2 ∘ f1.
+/2 width=1 by after_total_aux/ qed.
+
+(* Specific inversion lemmas on after ***************************************)
+
+lemma after_inv_xpx: ∀f2,g2,f,p2,p. p2⨮f2 ⊚ g2 ≘ p⨮f → ∀f1. ⫯f1 = g2 →
+                     f2 ⊚ f1 ≘ f ∧ p2 = p.
+#f2 #g2 #f #p2 elim p2 -p2
+[ #p #Hf #f1 #H2 elim (after_inv_ppx … Hf … H2) -g2 [|*: // ]
+  #g #Hf #H elim (push_inv_seq_dx … H) -H destruct /2 width=1 by conj/
+| #p2 #IH #p #Hf #f1 #H2 elim (after_inv_nxx … Hf) -Hf [|*: // ]
+  #g1 #Hg #H1 elim (next_inv_seq_dx … H1) -H1
+  #x #Hx #H destruct elim (IH … Hg) [|*: // ] -IH -Hg
+  #H destruct /2 width=1 by conj/
+]
+qed-.
+
+lemma after_inv_xnx: ∀f2,g2,f,p2,p. p2⨮f2 ⊚ g2 ≘ p⨮f → ∀f1. ↑f1 = g2 →
+                     ∃∃q. f2 ⊚ f1 ≘ q⨮f & q+p2 = p.
+#f2 #g2 #f #p2 elim p2 -p2
+[ #p #Hf #f1 #H2 elim (after_inv_pnx … Hf … H2) -g2 [|*: // ]
+  #g #Hf #H elim (next_inv_seq_dx … H) -H
+  #x #Hx #Hg destruct /2 width=3 by ex2_intro/
+| #p2 #IH #p #Hf #f1 #H2 elim (after_inv_nxx … Hf) -Hf [|*: // ]
+  #g #Hg #H elim (next_inv_seq_dx … H) -H
+  #x #Hx #H destruct elim (IH … Hg) -IH -Hg [|*: // ]
+  #m #Hf #Hm destruct /2 width=3 by ex2_intro/
+]
+qed-.
+
+lemma after_inv_const: ∀f2,f1,f,p1,p.
+      p⨮f2 ⊚ p1⨮f1 ≘ p⨮f → f2 ⊚ f1 ≘ f ∧ 𝟏 = p1.
+#f2 #f1 #f #p1 #p elim p -p
+[ #H elim (after_inv_pxp … H) -H [|*: // ]
+  #g2 #Hf #H elim (push_inv_seq_dx … H) -H /2 width=1 by conj/
+| #p #IH #H lapply (after_inv_nxn … H ????) -H /2 width=5 by/
+]
+qed-.
+
+lemma after_inv_total: ∀f2,f1,f. f2 ⊚ f1 ≘ f → f2 ∘ f1 ≡ f.
+/2 width=4 by after_mono/ qed-.
+
+(* Specific forward lemmas on after *****************************************)
+
+lemma after_fwd_hd: ∀f2,f1,f,p1,p. f2 ⊚ p1⨮f1 ≘ p⨮f → f2@❨p1❩ = p.
+#f2 #f1 #f #p1 #p #H lapply (after_fwd_at ? p1 (𝟏) … H) -H [4:|*: // ]
+/3 width=2 by at_inv_O1, sym_eq/
+qed-.
+
+lemma after_fwd_tls: ∀f,f1,p1,f2,p2,p. p2⨮f2 ⊚ p1⨮f1 ≘ p⨮f →
+                     (⫰*[↓p1]f2) ⊚ f1 ≘ f.
+#f #f1 #p1 elim p1 -p1
+[ #f2 #p2 #p #H elim (after_inv_xpx … H) -H //
+| #p1 #IH * #q2 #f2 #p2 #p #H elim (after_inv_xnx … H) -H [|*: // ]
+  #x #Hx #H destruct /2 width=3 by/
+]
+qed-.
+
+lemma after_inv_apply: ∀f2,f1,f,p2,p1,p. p2⨮f2 ⊚ p1⨮f1 ≘ p⨮f →
+                       (p2⨮f2)@❨p1❩ = p ∧ (⫰*[↓p1]f2) ⊚ f1 ≘ f.
+/3 width=3 by after_fwd_tls, after_fwd_hd, conj/ qed-.
+
+(* Properties on apply ******************************************************)
+
+lemma compose_apply (f2) (f1) (i): f2@❨f1@❨i❩❩ = (f2∘f1)@❨i❩.
+/4 width=6 by after_fwd_at, at_inv_total, sym_eq/ qed.