]> matita.cs.unibo.it Git - helm.git/blobdiff - matita/matita/contribs/lambdadelta/ground_2/ynat/ynat_plus.ma
- revision of ground_2 and basic_2
[helm.git] / matita / matita / contribs / lambdadelta / ground_2 / ynat / ynat_plus.ma
index 8f348733e461e1806e7bf111bcfc14109fa65531..f7a15c310424605c3f37d7a9a8c86013c590e6b7 100644 (file)
 (*                                                                        *)
 (**************************************************************************)
 
-include "ground_2/ynat/ynat_lt.ma".
+include "ground_2/ynat/ynat_minus.ma".
 
 (* NATURAL NUMBERS WITH INFINITY ********************************************)
 
 (* addition *)
-definition yplus: ynat → ynat → ynat ≝ λx,y. match x with
-[ yinj m ⇒ ysucc^m y
+definition yplus: ynat → ynat → ynat ≝ λx,y. match y with
+[ yinj n ⇒ ysucc^n x
 | Y      ⇒ Y
 ].
 
 interpretation "ynat plus" 'plus x y = (yplus x y).
 
+lemma yplus_O2: ∀m:ynat. m + 0 = m.
+// qed.
+
+lemma yplus_S2: ∀m:ynat. ∀n. m + S n = ⫯(m + n).
+// qed.
+
+lemma yplus_Y2: ∀m:ynat. m + (∞) = ∞.
+// qed.
+
 (* Properties on successor **************************************************)
 
-lemma yplus_succ1: ∀m,n. (⫯m) + n = ⫯(m + n).
-* //
+lemma yplus_succ2: ∀m,n. m + ⫯n = ⫯(m + n).
+#m * //
 qed.
 
-lemma yplus_SO1: ∀m. 1 + m = ⫯m.
+lemma yplus_succ1: ∀m,n. ⫯m + n = ⫯(m + n).
+#m * // #n elim n -n //
+qed.
+
+lemma yplus_succ_swap: ∀m,n. m + ⫯n = ⫯m + n.
+// qed.
+
+lemma yplus_SO2: ∀m. m + 1 = ⫯m.
 * //
-qed. 
+qed.
 
 (* Basic properties *********************************************************)
 
-lemma yplus_inj: ∀m,n. yinj m + yinj n = yinj (m + n).
-#m elim m -m //
-#m #IHm #n >(yplus_succ1 m) >IHm -IHm //
+lemma yplus_inj: ∀n,m. yinj m + yinj n = yinj (m + n).
+#n elim n -n //
+#n #IHn #m >(yplus_succ2 ? n) >IHn -IHn
+<plus_n_Sm //
 qed.
 
-lemma yplus_Y2: ∀m. (m + ∞) = ∞.
-* normalize //
+lemma yplus_Y1: ∀m. ∞ + m = ∞.
+* // #m elim m -m //
 qed.
 
 lemma yplus_comm: commutative … yplus.
 * [ #m ] * [1,3: #n ] //
-normalize >ysucc_iter_Y //
 qed.
 
 lemma yplus_assoc: associative … yplus.
-* // #x * //
-#y #z >yplus_inj whd in ⊢ (??%%); >iter_plus //
+#x #y * // #z cases y -y
+[ #y >yplus_inj whd in ⊢ (??%%); <iter_plus //
+| >yplus_Y1 //
+]
+qed.
+
+lemma yplus_O1: ∀n:ynat. 0 + n = n.
+#n >yplus_comm // qed.
+
+lemma yplus_comm_23: ∀x,y,z. x + z + y = x + y + z.
+#x #y #z >yplus_assoc //
+qed.
+
+(* Basic inversion lemmas ***************************************************)
+
+lemma yplus_inv_inj: ∀z,y,x. x + y = yinj z →
+                     ∃∃m,n. m + n = z & x = yinj m & y = yinj n.
+#z * [2: normalize #x #H destruct ]
+#y * [2: >yplus_Y1 #H destruct ]
+/3 width=5 by yinj_inj, ex3_2_intro/
+qed-.
+
+(* Properties on order ******************************************************)
+
+lemma yle_plus_dx2: ∀n,m. n ≤ m + n.
+* //
+#n elim n -n //
+#n #IHn #m >(yplus_succ2 ? n) @(yle_succ n) // (**) (* full auto fails *)
+qed.
+
+lemma yle_plus_dx1: ∀n,m. m ≤ m + n.
+// qed.
+
+lemma yle_plus_dx1_trans: ∀x,z. z ≤ x → ∀y. z ≤ x + y.
+/2 width=3 by yle_trans/ qed.
+
+lemma yle_plus_dx2_trans: ∀y,z. z ≤ y → ∀x. z ≤ x + y.
+/2 width=3 by yle_trans/ qed.
+
+lemma monotonic_yle_plus_dx: ∀x,y. x ≤ y → ∀z. x + z ≤ y + z.
+#x #y #Hxy * //
+#z elim z -z /3 width=1 by yle_succ/
+qed.
+
+lemma monotonic_yle_plus_sn: ∀x,y. x ≤ y → ∀z. z + x ≤ z + y.
+/2 width=1 by monotonic_yle_plus_dx/ qed.
+
+lemma monotonic_yle_plus: ∀x1,y1. x1 ≤ y1 → ∀x2,y2. x2 ≤ y2 →
+                          x1 + x2 ≤ y1 + y2.
+/3 width=3 by monotonic_yle_plus_dx, monotonic_yle_plus_sn, yle_trans/ qed.
+
+(* Forward lemmas on order **************************************************)
+
+lemma yle_fwd_plus_sn2: ∀x,y,z. x + y ≤ z → y ≤ z.
+/2 width=3 by yle_trans/ qed-.
+
+lemma yle_fwd_plus_sn1: ∀x,y,z. x + y ≤ z → x ≤ z.
+/2 width=3 by yle_trans/ qed-.
+
+lemma yle_inv_monotonic_plus_dx: ∀x,y:ynat.∀z:nat. x + z ≤ y + z → x ≤ y.
+#x #y #z elim z -z /3 width=1 by yle_inv_succ/
+qed-.
+
+lemma yle_inv_monotonic_plus_sn: ∀x,y:ynat.∀z:nat. z + x ≤ z + y → x ≤ y.
+/2 width=2 by yle_inv_monotonic_plus_dx/ qed-.
+
+lemma yle_fwd_plus_ge: ∀m1,m2:nat. m2 ≤ m1 → ∀n1,n2:ynat. m1 + n1 ≤ m2 + n2 → n1 ≤ n2.
+#m1 #m2 #Hm12 #n1 #n2 #H
+lapply (monotonic_yle_plus … Hm12 … H) -Hm12 -H
+/2 width=2 by yle_inv_monotonic_plus_sn/
+qed-.
+
+lemma yle_fwd_plus_ge_inj: ∀m1:nat. ∀m2,n1,n2:ynat. m2 ≤ m1 → m1 + n1 ≤ m2 + n2 → n1 ≤ n2.
+#m2 #m1 #n1 #n2 #H elim (yle_inv_inj2 … H) -H
+#x #H0 #H destruct /3 width=4 by yle_fwd_plus_ge, yle_inj/
+qed-.
+
+lemma yle_fwd_plus_yge: ∀n2,m1:ynat. ∀n1,m2:nat. m2 ≤ m1 → m1 + n1 ≤ m2 + n2 → n1 ≤ n2.
+* // #n2 * /2 width=4 by yle_fwd_plus_ge_inj/
+qed-.
+
+(* Forward lemmas on strict order *******************************************)
+
+lemma ylt_inv_monotonic_plus_dx: ∀x,y,z. x + z < y + z → x < y.
+* [2: #y #z >yplus_comm #H elim (ylt_inv_Y1 … H) ]
+#x * // #y * [2: #H elim (ylt_inv_Y1 … H) ]
+/4 width=3 by ylt_inv_inj, ylt_inj, lt_plus_to_lt_l/
+qed-.
+
+(* Properties on strict order ***********************************************)
+
+lemma ylt_plus_dx1_trans: ∀x,z. z < x → ∀y. z < x + yinj y.
+/2 width=3 by ylt_yle_trans/ qed.
+
+lemma ylt_plus_dx2_trans: ∀y,z. z < y → ∀x. z < yinj x + y.
+/2 width=3 by ylt_yle_trans/ qed.
+
+lemma monotonic_ylt_plus_dx: ∀x,y. x < y → ∀z:nat. x + yinj z < y + yinj z.
+#x #y #Hxy #z elim z -z /3 width=1 by ylt_succ/
+qed.
+
+lemma monotonic_ylt_plus_sn: ∀x,y. x < y → ∀z:nat. yinj z + x < yinj z + y.
+/2 width=1 by monotonic_ylt_plus_dx/ qed.
+
+(* Properties on predeccessor ***********************************************)
+
+lemma yplus_pred1: ∀x,y:ynat. 0 < x → ⫰x + y = ⫰(x+y).
+#x * // #y elim y -y // #y #IH #Hx
+>yplus_S2 >yplus_S2 >IH -IH // >ylt_inv_O1
+/2 width=1 by ylt_plus_dx1_trans/
+qed-.
+
+lemma yplus_pred2: ∀x,y:ynat. 0 < y → x + ⫰y = ⫰(x+y).
+/2 width=1 by yplus_pred1/ qed-.
+
+(* Properties on minus ******************************************************)
+
+lemma yplus_minus_inj: ∀m:ynat. ∀n:nat. m + n - n = m.
+#m #n elim n -n //
+#n #IHn >(yplus_succ2 m n) >(yminus_succ … n) //
+qed.
+
+lemma yplus_minus: ∀m,n. m + n - n ≤ m.
+#m * //
 qed.
 
+lemma yminus_plus2: ∀z,y,x:ynat. x - (y + z) = x - y - z.
+* // #z * [2: >yplus_Y1 >yminus_O1 // ] #y *
+[ #x >yplus_inj >yminus_inj >yminus_inj >yminus_inj /2 width=1 by eq_f/
+| >yplus_inj >yminus_Y_inj //
+]
+qed.
+
+(* Forward lemmas on minus **************************************************)
+
+lemma yle_plus1_to_minus_inj2: ∀x,z:ynat. ∀y:nat. x + y ≤ z → x ≤ z - y.
+#x #z #y #H lapply (monotonic_yle_minus_dx … H y) -H //
+qed-.
+
+lemma yle_plus1_to_minus_inj1: ∀x,z:ynat. ∀y:nat. y + x ≤ z → x ≤ z - y.
+/2 width=1 by yle_plus1_to_minus_inj2/ qed-.
+
+lemma yle_plus2_to_minus_inj2: ∀x,y:ynat. ∀z:nat. x ≤ y + z → x - z ≤ y.
+/2 width=1 by monotonic_yle_minus_dx/ qed-.
+
+lemma yle_plus2_to_minus_inj1: ∀x,y:ynat. ∀z:nat. x ≤ z + y → x - z ≤ y.
+/2 width=1 by yle_plus2_to_minus_inj2/ qed-.
+
+lemma yplus_minus_assoc_inj: ∀x:nat. ∀y,z:ynat. x ≤ y → z + (y - x) = z + y - x.
+#x *
+[ #y * // #z >yminus_inj >yplus_inj >yplus_inj
+  /4 width=1 by yle_inv_inj, plus_minus, eq_f/
+| >yminus_Y_inj //
+]
+qed-.
+
+lemma yplus_minus_assoc_comm_inj: ∀x:nat. ∀y,z:ynat. x ≤ y → z - (y - x) = z + x - y.
+#x *
+[ #y *
+  [ #z >yminus_inj >yminus_inj >yplus_inj >yminus_inj
+    /4 width=1 by yle_inv_inj, minus_le_minus_minus_comm, eq_f/
+  | >yminus_inj >yminus_Y_inj //
+  ]
+| >yminus_Y_inj //
+]
+qed-.
+
+lemma yplus_minus_comm_inj: ∀y:nat. ∀x,z:ynat. y ≤ x → x + z - y = x - y + z.
+#y * // #x * //
+#z #Hxy >yplus_inj >yminus_inj <plus_minus
+/2 width=1 by yle_inv_inj/
+qed-.
+
+lemma ylt_plus1_to_minus_inj2: ∀x,z:ynat. ∀y:nat. x + y < z → x < z - y.
+#x #z #y #H lapply (monotonic_ylt_minus_dx … H y ?) -H //
+qed-.
+
+lemma ylt_plus1_to_minus_inj1: ∀x,z:ynat. ∀y:nat. y + x < z → x < z - y.
+/2 width=1 by ylt_plus1_to_minus_inj2/ qed-.
+
+lemma ylt_plus2_to_minus_inj2: ∀x,y:ynat. ∀z:nat. z ≤ x → x < y + z → x - z < y.
+/2 width=1 by monotonic_ylt_minus_dx/ qed-.
+
+lemma ylt_plus2_to_minus_inj1: ∀x,y:ynat. ∀z:nat. z ≤ x → x < z + y → x - z < y.
+/2 width=1 by ylt_plus2_to_minus_inj2/ qed-.
+
+(* Inversion lemmas on minus ************************************************)
+
+lemma yle_inv_plus_inj2: ∀x,z:ynat. ∀y:nat. x + y ≤ z → x ≤ z - y ∧ y ≤ z.
+/3 width=3 by yle_plus1_to_minus_inj2, yle_trans, conj/ qed-.
+
+lemma yle_inv_plus_inj1: ∀x,z:ynat. ∀y:nat. y + x ≤ z → x ≤ z - y ∧ y ≤ z.
+/2 width=1 by yle_inv_plus_inj2/ qed-.