]> matita.cs.unibo.it Git - helm.git/blobdiff - matita/matita/contribs/lambdadelta/ground_2A/lib/star.ma
milestone update in ground_2 and basic_2A
[helm.git] / matita / matita / contribs / lambdadelta / ground_2A / lib / star.ma
diff --git a/matita/matita/contribs/lambdadelta/ground_2A/lib/star.ma b/matita/matita/contribs/lambdadelta/ground_2A/lib/star.ma
deleted file mode 100644 (file)
index 0f193f0..0000000
+++ /dev/null
@@ -1,329 +0,0 @@
-(**************************************************************************)
-(*       ___                                                              *)
-(*      ||M||                                                             *)
-(*      ||A||       A project by Andrea Asperti                           *)
-(*      ||T||                                                             *)
-(*      ||I||       Developers:                                           *)
-(*      ||T||         The HELM team.                                      *)
-(*      ||A||         http://helm.cs.unibo.it                             *)
-(*      \   /                                                             *)
-(*       \ /        This file is distributed under the terms of the       *)
-(*        v         GNU General Public License Version 2                  *)
-(*                                                                        *)
-(**************************************************************************)
-
-include "basics/star1.ma".
-include "ground_2A/xoa/xoa_props.ma".
-
-(* PROPERTIES OF RELATIONS **************************************************)
-
-definition Decidable: Prop → Prop ≝ λR. R ∨ (R → ⊥).
-
-definition Transitive: ∀A. ∀R: relation A. Prop ≝ λA,R.
-                       ∀a1,a0. R a1 a0 → ∀a2. R a0 a2 → R a1 a2.
-
-definition confluent2: ∀A. ∀R1,R2: relation A. Prop ≝ λA,R1,R2.
-                       ∀a0,a1. R1 a0 a1 → ∀a2. R2 a0 a2 →
-                       ∃∃a. R2 a1 a & R1 a2 a.
-
-definition transitive2: ∀A. ∀R1,R2: relation A. Prop ≝ λA,R1,R2.
-                        ∀a1,a0. R1 a1 a0 → ∀a2. R2 a0 a2 →
-                        ∃∃a. R2 a1 a & R1 a a2.
-
-definition bi_confluent:  ∀A,B. ∀R: bi_relation A B. Prop ≝ λA,B,R.
-                          ∀a0,a1,b0,b1. R a0 b0 a1 b1 → ∀a2,b2. R a0 b0 a2 b2 →
-                          ∃∃a,b. R a1 b1 a b & R a2 b2 a b.
-
-definition LTC: ∀A:Type[0]. ∀B. (A→relation B) → (A→relation B) ≝
-                λA,B,R,a. TC … (R a).
-
-definition lsub_trans: ∀A,B. relation2 (A→relation B) (relation A) ≝ λA,B,R1,R2.
-                       ∀L2,T1,T2. R1 L2 T1 T2 → ∀L1. R2 L1 L2 → R1 L1 T1 T2.
-
-definition s_r_transitive: ∀A,B. relation2 (A→relation B) (B→relation A) ≝ λA,B,R1,R2.
-                           ∀L2,T1,T2. R1 L2 T1 T2 → ∀L1. R2 T1 L1 L2 → LTC … R1 L1 T1 T2.
-
-definition s_rs_transitive: ∀A,B. relation2 (A→relation B) (B→relation A) ≝ λA,B,R1,R2.
-                            ∀L2,T1,T2. LTC … R1 L2 T1 T2 → ∀L1. R2 T1 L1 L2 → LTC … R1 L1 T1 T2.
-
-definition s_r_confluent1: ∀A,B. relation2 (A→relation B) (B→relation A) ≝ λA,B,R1,R2.
-                           ∀L1,T1,T2. R1 L1 T1 T2 → ∀L2. R2 T1 L1 L2 → R2 T2 L1 L2.
-
-lemma TC_strip1: ∀A,R1,R2. confluent2 A R1 R2 →
-                 ∀a0,a1. TC … R1 a0 a1 → ∀a2. R2 a0 a2 →
-                 ∃∃a. R2 a1 a & TC … R1 a2 a.
-#A #R1 #R2 #HR12 #a0 #a1 #H elim H -a1
-[ #a1 #Ha01 #a2 #Ha02
-  elim (HR12 … Ha01 … Ha02) -HR12 -a0 /3 width=3 by inj, ex2_intro/
-| #a #a1 #_ #Ha1 #IHa0 #a2 #Ha02
-  elim (IHa0 … Ha02) -a0 #a0 #Ha0 #Ha20
-  elim (HR12 … Ha1 … Ha0) -HR12 -a /4 width=5 by step, ex2_intro/
-]
-qed.
-
-lemma TC_strip2: ∀A,R1,R2. confluent2 A R1 R2 →
-                 ∀a0,a2. TC … R2 a0 a2 → ∀a1. R1 a0 a1 →
-                 ∃∃a. TC … R2 a1 a & R1 a2 a.
-#A #R1 #R2 #HR12 #a0 #a2 #H elim H -a2
-[ #a2 #Ha02 #a1 #Ha01
-  elim (HR12 … Ha01 … Ha02) -HR12 -a0 /3 width=3 by inj, ex2_intro/
-| #a #a2 #_ #Ha2 #IHa0 #a1 #Ha01
-  elim (IHa0 … Ha01) -a0 #a0 #Ha10 #Ha0
-  elim (HR12 … Ha0 … Ha2) -HR12 -a /4 width=3 by step, ex2_intro/
-]
-qed.
-
-lemma TC_confluent2: ∀A,R1,R2.
-                     confluent2 A R1 R2 → confluent2 A (TC … R1) (TC … R2).
-#A #R1 #R2 #HR12 #a0 #a1 #H elim H -a1
-[ #a1 #Ha01 #a2 #Ha02
-  elim (TC_strip2 … HR12 … Ha02 … Ha01) -HR12 -a0 /3 width=3 by inj, ex2_intro/
-| #a #a1 #_ #Ha1 #IHa0 #a2 #Ha02
-  elim (IHa0 … Ha02) -a0 #a0 #Ha0 #Ha20
-  elim (TC_strip2 … HR12 … Ha0 … Ha1) -HR12 -a /4 width=5 by step, ex2_intro/
-]
-qed.
-
-lemma TC_strap1: ∀A,R1,R2. transitive2 A R1 R2 →
-                 ∀a1,a0. TC … R1 a1 a0 → ∀a2. R2 a0 a2 →
-                 ∃∃a. R2 a1 a & TC … R1 a a2.
-#A #R1 #R2 #HR12 #a1 #a0 #H elim H -a0
-[ #a0 #Ha10 #a2 #Ha02
-  elim (HR12 … Ha10 … Ha02) -HR12 -a0 /3 width=3 by inj, ex2_intro/
-| #a #a0 #_ #Ha0 #IHa #a2 #Ha02
-  elim (HR12 … Ha0 … Ha02) -HR12 -a0 #a0 #Ha0 #Ha02
-  elim (IHa … Ha0) -a /4 width=5 by step, ex2_intro/
-]
-qed.
-
-lemma TC_strap2: ∀A,R1,R2. transitive2 A R1 R2 →
-                 ∀a0,a2. TC … R2 a0 a2 → ∀a1. R1 a1 a0 →
-                 ∃∃a. TC … R2 a1 a & R1 a a2.
-#A #R1 #R2 #HR12 #a0 #a2 #H elim H -a2
-[ #a2 #Ha02 #a1 #Ha10
-  elim (HR12 … Ha10 … Ha02) -HR12 -a0 /3 width=3 by inj, ex2_intro/
-| #a #a2 #_ #Ha02 #IHa #a1 #Ha10
-  elim (IHa … Ha10) -a0 #a0 #Ha10 #Ha0
-  elim (HR12 … Ha0 … Ha02) -HR12 -a /4 width=3 by step, ex2_intro/
-]
-qed.
-
-lemma TC_transitive2: ∀A,R1,R2.
-                      transitive2 A R1 R2 → transitive2 A (TC … R1) (TC … R2).
-#A #R1 #R2 #HR12 #a1 #a0 #H elim H -a0
-[ #a0 #Ha10 #a2 #Ha02
-  elim (TC_strap2 … HR12 … Ha02 … Ha10) -HR12 -a0 /3 width=3 by inj, ex2_intro/
-| #a #a0 #_ #Ha0 #IHa #a2 #Ha02
-  elim (TC_strap2 … HR12 … Ha02 … Ha0) -HR12 -a0 #a0 #Ha0 #Ha02
-  elim (IHa … Ha0) -a /4 width=5 by step, ex2_intro/
-]
-qed.
-
-definition NF: ∀A. relation A → relation A → predicate A ≝
-   λA,R,S,a1. ∀a2. R a1 a2 → S a2 a1.
-
-definition NF_dec: ∀A. relation A → relation A → Prop ≝
-                   λA,R,S. ∀a1. NF A R S a1 ∨
-                   ∃∃a2. R … a1 a2 & (S a2 a1 → ⊥).
-
-inductive SN (A) (R,S:relation A): predicate A ≝
-| SN_intro: ∀a1. (∀a2. R a1 a2 → (S a2 a1 → ⊥) → SN A R S a2) → SN A R S a1
-.
-
-lemma NF_to_SN: ∀A,R,S,a. NF A R S a → SN A R S a.
-#A #R #S #a1 #Ha1
-@SN_intro #a2 #HRa12 #HSa12
-elim HSa12 -HSa12 /2 width=1 by/
-qed.
-
-lemma SN_to_NF: ∀A,R,S. NF_dec A R S →
-                ∀a1. SN A R S a1 →
-                ∃∃a2. star … R a1 a2 & NF A R S a2.
-#A #R #S #HRS #a1 #H elim H -a1
-#a1 #_ #IHa1 elim (HRS a1) -HRS /2 width=3 by srefl, ex2_intro/
-* #a0 #Ha10 #Ha01 elim (IHa1 … Ha10 Ha01) -IHa1 -Ha01 /3 width=3 by star_compl, ex2_intro/
-qed-.
-
-definition NF_sn: ∀A. relation A → relation A → predicate A ≝
-   λA,R,S,a2. ∀a1. R a1 a2 → S a2 a1.
-
-inductive SN_sn (A) (R,S:relation A): predicate A ≝
-| SN_sn_intro: ∀a2. (∀a1. R a1 a2 → (S a2 a1 → ⊥) → SN_sn A R S a1) → SN_sn A R S a2
-.
-
-lemma NF_to_SN_sn: ∀A,R,S,a. NF_sn A R S a → SN_sn A R S a.
-#A #R #S #a2 #Ha2
-@SN_sn_intro #a1 #HRa12 #HSa12
-elim HSa12 -HSa12 /2 width=1 by/
-qed.
-
-lemma LTC_lsub_trans: ∀A,B,R,S. lsub_trans A B R S → lsub_trans A B (LTC … R) S.
-#A #B #R #S #HRS #L2 #T1 #T2 #H elim H -T2 /3 width=3 by inj/
-#T #T2 #_ #HT2 #IHT1 #L1 #HL12
-lapply (HRS … HT2 … HL12) -HRS -HT2 /3 width=3 by step/
-qed-.
-
-lemma s_r_conf1_LTC1: ∀A,B,S,R. s_r_confluent1 A B S R → s_r_confluent1 A B (LTC … S) R.
-#A #B #S #R #HSR #L1 #T1 #T2 #H @(TC_ind_dx … T1 H) -T1 /3 width=3 by/
-qed-.
-
-lemma s_r_trans_LTC1: ∀A,B,S,R. s_r_confluent1 A B S R →
-                      s_r_transitive A B S R → s_rs_transitive A B S R.
-#A #B #S #R #H1SR #H2SR #L2 #T1 #T2 #H @(TC_ind_dx … T1 H) -T1 /2 width=3 by/
-#T1 #T #HT1 #_ #IHT2 #L1 #HL12 lapply (H2SR … HT1 … HL12) -H2SR -HT1
-/4 width=5 by s_r_conf1_LTC1, trans_TC/
-qed-.
-
-lemma s_r_trans_LTC2: ∀A,B,S,R. s_rs_transitive A B S R → s_r_transitive A B S (LTC … R).
-#A #B #S #R #HSR #L2 #T1 #T2 #HT12 #L1 #H @(TC_ind_dx … L1 H) -L1 /3 width=3 by inj/
-qed-.
-
-lemma s_r_to_s_rs_trans: ∀A,B,S,R. s_r_transitive A B (LTC … S) R →
-                         s_rs_transitive A B S R.
-#A #B #S #R #HSR #L2 #T1 #T2 #HL2 #L1 #HT1
-elim (TC_idem … (S L1) …  T1 T2)
-#_ #H @H @HSR //
-qed-.
-
-lemma s_rs_to_s_r_trans: ∀A,B,S,R. s_rs_transitive A B S R →
-                         s_r_transitive A B (LTC … S) R.
-#A #B #S #R #HSR #L2 #T1 #T2 #HL2 #L1 #HT1
-elim (TC_idem … (S L1) …  T1 T2)
-#H #_ @H @HSR //
-qed-.
-
-lemma s_rs_trans_TC1: ∀A,B,S,R. s_rs_transitive A B S R →
-                      s_rs_transitive A B (LTC … S) R.
-#A #B #S #R #HSR #L2 #T1 #T2 #HL2 #L1 #HT1
-elim (TC_idem … (S L1) …  T1 T2)
-elim (TC_idem … (S L2) …  T1 T2)
-#_ #H1 #H2 #_ @H2 @HSR /3 width=3 by/
-qed-.
-
-(* relations on unboxed pairs ***********************************************)
-
-lemma bi_TC_strip: ∀A,B,R. bi_confluent A B R →
-                   ∀a0,a1,b0,b1. R a0 b0 a1 b1 → ∀a2,b2. bi_TC … R a0 b0 a2 b2 →
-                   ∃∃a,b. bi_TC … R a1 b1 a b & R a2 b2 a b.
-#A #B #R #HR #a0 #a1 #b0 #b1 #H01 #a2 #b2 #H elim H -a2 -b2
-[ #a2 #b2 #H02
-  elim (HR … H01 … H02) -HR -a0 -b0 /3 width=4 by ex2_2_intro, bi_inj/
-| #a2 #b2 #a3 #b3 #_ #H23 * #a #b #H1 #H2
-  elim (HR … H23 … H2) -HR -a0 -b0 -a2 -b2 /3 width=4 by ex2_2_intro, bi_step/
-]
-qed.
-
-lemma bi_TC_confluent: ∀A,B,R. bi_confluent A B R →
-                       bi_confluent A B (bi_TC … R).
-#A #B #R #HR #a0 #a1 #b0 #b1 #H elim H -a1 -b1
-[ #a1 #b1 #H01 #a2 #b2 #H02
-  elim (bi_TC_strip … HR … H01 … H02) -a0 -b0 /3 width=4 by ex2_2_intro, bi_inj/
-| #a1 #b1 #a3 #b3 #_ #H13 #IH #a2 #b2 #H02
-  elim (IH … H02) -a0 -b0 #a0 #b0 #H10 #H20
-  elim (bi_TC_strip … HR … H13 … H10) -a1 -b1 /3 width=7 by ex2_2_intro, bi_step/
-]
-qed.
-
-lemma bi_TC_decomp_r: ∀A,B. ∀R:bi_relation A B.
-                      ∀a1,a2,b1,b2. bi_TC … R a1 b1 a2 b2 →
-                      R a1 b1 a2 b2 ∨
-                      ∃∃a,b. bi_TC … R a1 b1 a b & R a b a2 b2.
-#A #B #R #a1 #a2 #b1 #b2 * -a2 -b2 /2 width=1/ /3 width=4 by ex2_2_intro, or_intror/
-qed-.
-
-lemma bi_TC_decomp_l: ∀A,B. ∀R:bi_relation A B.
-                      ∀a1,a2,b1,b2. bi_TC … R a1 b1 a2 b2 →
-                      R a1 b1 a2 b2 ∨
-                      ∃∃a,b. R a1 b1 a b & bi_TC … R a b a2 b2.
-#A #B #R #a1 #a2 #b1 #b2 #H @(bi_TC_ind_dx … a1 b1 H) -a1 -b1
-[ /2 width=1 by or_introl/
-| #a1 #a #b1 #b #Hab1 #Hab2 #_ /3 width=4 by ex2_2_intro, or_intror/ (**) (* auto fails without #_ *)
-]
-qed-.
-
-(* relations on unboxed triples *********************************************)
-
-definition tri_RC: ∀A,B,C. tri_relation A B C → tri_relation A B C ≝
-                   λA,B,C,R,a1,b1,c1,a2,b2,c2. R … a1 b1 c1 a2 b2 c2 ∨
-                   ∧∧ a1 = a2 & b1 = b2 & c1 = c2.
-
-lemma tri_RC_reflexive: ∀A,B,C,R. tri_reflexive A B C (tri_RC … R).
-/3 width=1 by and3_intro, or_intror/ qed.
-
-definition tri_star: ∀A,B,C,R. tri_relation A B C ≝
-                     λA,B,C,R. tri_RC A B C (tri_TC … R).
-
-lemma tri_star_tri_reflexive: ∀A,B,C,R. tri_reflexive A B C (tri_star … R).
-/2 width=1 by/ qed.
-
-lemma tri_TC_to_tri_star: ∀A,B,C,R,a1,b1,c1,a2,b2,c2.
-                          tri_TC A B C R a1 b1 c1 a2 b2 c2 →
-                          tri_star A B C R a1 b1 c1 a2 b2 c2.
-/2 width=1 by or_introl/ qed.
-
-lemma tri_R_to_tri_star: ∀A,B,C,R,a1,b1,c1,a2,b2,c2.
-                         R a1 b1 c1 a2 b2 c2 → tri_star A B C R a1 b1 c1 a2 b2 c2.
-/3 width=1 by tri_TC_to_tri_star, tri_inj/ qed.
-
-lemma tri_star_strap1: ∀A,B,C,R,a1,a,a2,b1,b,b2,c1,c,c2.
-                       tri_star A B C R a1 b1 c1 a b c →
-                       R a b c a2 b2 c2 → tri_star A B C R a1 b1 c1 a2 b2 c2.
-#A #B #C #R #a1 #a #a2 #b1 #b #b2 #c1 #c #c2 *
-[ /3 width=5 by tri_TC_to_tri_star, tri_step/
-| * #H1 #H2 #H3 destruct /2 width=1 by tri_R_to_tri_star/
-]
-qed.
-
-lemma tri_star_strap2: ∀A,B,C,R,a1,a,a2,b1,b,b2,c1,c,c2. R a1 b1 c1 a b c →
-                       tri_star A B C R a b c a2 b2 c2 →
-                       tri_star A B C R a1 b1 c1 a2 b2 c2.
-#A #B #C #R #a1 #a #a2 #b1 #b #b2 #c1 #c #c2 #H *
-[ /3 width=5 by tri_TC_to_tri_star, tri_TC_strap/
-| * #H1 #H2 #H3 destruct /2 width=1 by tri_R_to_tri_star/
-]
-qed.
-
-lemma tri_star_to_tri_TC_to_tri_TC: ∀A,B,C,R,a1,a,a2,b1,b,b2,c1,c,c2.
-                                    tri_star A B C R a1 b1 c1 a b c →
-                                    tri_TC A B C R a b c a2 b2 c2 →
-                                    tri_TC A B C R a1 b1 c1 a2 b2 c2.
-#A #B #C #R #a1 #a #a2 #b1 #b #b2 #c1 #c #c2 *
-[ /2 width=5 by tri_TC_transitive/
-| * #H1 #H2 #H3 destruct /2 width=1 by/
-]
-qed.
-
-lemma tri_TC_to_tri_star_to_tri_TC: ∀A,B,C,R,a1,a,a2,b1,b,b2,c1,c,c2.
-                                    tri_TC A B C R a1 b1 c1 a b c →
-                                    tri_star A B C R a b c a2 b2 c2 →
-                                    tri_TC A B C R a1 b1 c1 a2 b2 c2.
-#A #B #C #R #a1 #a #a2 #b1 #b #b2 #c1 #c #c2 #H *
-[ /2 width=5 by tri_TC_transitive/
-| * #H1 #H2 #H3 destruct /2 width=1 by/
-]
-qed.
-
-lemma tri_tansitive_tri_star: ∀A,B,C,R. tri_transitive A B C (tri_star … R).
-#A #B #C #R #a1 #a #b1 #b #c1 #c #H #a2 #b2 #c2 *
-[ /3 width=5 by tri_star_to_tri_TC_to_tri_TC, tri_TC_to_tri_star/
-| * #H1 #H2 #H3 destruct /2 width=1 by/
-]
-qed.
-
-lemma tri_star_ind: ∀A,B,C,R,a1,b1,c1. ∀P:relation3 A B C. P a1 b1 c1 →
-                    (∀a,a2,b,b2,c,c2. tri_star … R a1 b1 c1 a b c → R a b c a2 b2 c2 → P a b c → P a2 b2 c2) →
-                    ∀a2,b2,c2. tri_star … R a1 b1 c1 a2 b2 c2 → P a2 b2 c2.
-#A #B #C #R #a1 #b1 #c1 #P #H #IH #a2 #b2 #c2 *
-[ #H12 elim H12 -a2 -b2 -c2 /3 width=6 by tri_TC_to_tri_star/
-| * #H1 #H2 #H3 destruct //
-]
-qed-.
-
-lemma tri_star_ind_dx: ∀A,B,C,R,a2,b2,c2. ∀P:relation3 A B C. P a2 b2 c2 →
-                       (∀a1,a,b1,b,c1,c. R a1 b1 c1 a b c → tri_star … R a b c a2 b2 c2 → P a b c → P a1 b1 c1) →
-                       ∀a1,b1,c1. tri_star … R a1 b1 c1 a2 b2 c2 → P a1 b1 c1.
-#A #B #C #R #a2 #b2 #c2 #P #H #IH #a1 #b1 #c1 *
-[ #H12 @(tri_TC_ind_dx … a1 b1 c1 H12) -a1 -b1 -c1 /3 width=6 by tri_TC_to_tri_star/
-| * #H1 #H2 #H3 destruct //
-]
-qed-.