]> matita.cs.unibo.it Git - helm.git/blobdiff - matita/matita/lib/lambda/subterms/relocation.ma
lambda finaly moved in lib
[helm.git] / matita / matita / lib / lambda / subterms / relocation.ma
diff --git a/matita/matita/lib/lambda/subterms/relocation.ma b/matita/matita/lib/lambda/subterms/relocation.ma
new file mode 100644 (file)
index 0000000..0943d3f
--- /dev/null
@@ -0,0 +1,253 @@
+(**************************************************************************)
+(*       ___                                                              *)
+(*      ||M||                                                             *)
+(*      ||A||       A project by Andrea Asperti                           *)
+(*      ||T||                                                             *)
+(*      ||I||       Developers:                                           *)
+(*      ||T||         The HELM team.                                      *)
+(*      ||A||         http://helm.cs.unibo.it                             *)
+(*      \   /                                                             *)
+(*       \ /        This file is distributed under the terms of the       *)
+(*        v         GNU General Public License Version 2                  *)
+(*                                                                        *)
+(**************************************************************************)
+
+include "subterms/subterms.ma".
+
+(* RELOCATION FOR SUBTERMS **************************************************)
+
+let rec slift h d E on E ≝ match E with
+[ SVRef b i   ⇒ {b}#(tri … i d i (i + h) (i + h))
+| SAbst b T   ⇒ {b}𝛌.(slift h (d+1) T)
+| SAppl b V T ⇒ {b}@(slift h d V).(slift h d T)
+].
+
+interpretation "relocation for subterms" 'Lift h d E = (slift h d E).
+
+lemma slift_vref_lt: ∀b,d,h,i. i < d → ↑[d, h] {b}#i = {b}#i.
+normalize /3 width=1/
+qed.
+
+lemma slift_vref_ge: ∀b,d,h,i. d ≤ i → ↑[d, h] {b}#i = {b}#(i+h).
+#b #d #h #i #H elim (le_to_or_lt_eq … H) -H
+normalize // /3 width=1/
+qed.
+
+lemma slift_id: ∀E,d. ↑[d, 0] E = E.
+#E elim E -E
+[ #b #i #d elim (lt_or_ge i d) /2 width=1/
+| /3 width=1/
+| /3 width=1/
+]
+qed.
+
+lemma slift_inv_vref_lt: ∀c,j,d. j < d → ∀h,E. ↑[d, h] E = {c}#j → E = {c}#j.
+#c #j #d #Hjd #h * normalize
+[ #b #i elim (lt_or_eq_or_gt i d) #Hid
+  [ >(tri_lt ???? … Hid) -Hid -Hjd //
+  | #H destruct >tri_eq in Hjd; #H
+    elim (plus_lt_false … H)
+  | >(tri_gt ???? … Hid)
+    lapply (transitive_lt … Hjd Hid) -d #H #H0 destruct
+    elim (plus_lt_false … H)
+  ]
+| #b #T #H destruct
+| #b #V #T #H destruct
+]
+qed.
+
+lemma slift_inv_vref_ge: ∀c,j,d. d ≤ j → ∀h,E. ↑[d, h] E = {c}#j →
+                         d + h ≤ j ∧ E = {c}#(j-h).
+#c #j #d #Hdj #h * normalize
+[ #b #i elim (lt_or_eq_or_gt i d) #Hid
+  [ >(tri_lt ???? … Hid) #H destruct
+    lapply (le_to_lt_to_lt … Hdj Hid) -Hdj -Hid #H
+    elim (lt_refl_false … H)
+  | #H -Hdj destruct /2 width=1/
+  | >(tri_gt ???? … Hid) #H -Hdj destruct /4 width=1/
+  ]
+| #b #T #H destruct
+| #b #V #T #H destruct
+]
+qed-.
+
+lemma slift_inv_vref_be: ∀c,j,d,h. d ≤ j → j < d + h → ∀E. ↑[d, h] E = {c}#j → ⊥.
+#c #j #d #h #Hdj #Hjdh #E #H elim (slift_inv_vref_ge … H) -H // -Hdj #Hdhj #_ -E
+lapply (lt_to_le_to_lt … Hjdh Hdhj) -d -h #H
+elim (lt_refl_false … H)
+qed-.
+
+lemma slift_inv_vref_ge_plus: ∀c,j,d,h. d + h ≤ j →
+                              ∀E. ↑[d, h] E = {c}#j → E = {c}#(j-h).
+#c #j #d #h #Hdhj #E #H elim (slift_inv_vref_ge … H) -H // -E /2 width=2/
+qed.
+
+lemma slift_inv_abst: ∀c,U,d,h,E. ↑[d, h] E = {c}𝛌.U →
+                      ∃∃T. ↑[d+1, h] T = U & E = {c}𝛌.T.
+#c #U #d #h * normalize
+[ #b #i #H destruct
+| #b #T #H destruct /2 width=3/
+| #b #V #T #H destruct
+]
+qed-.
+
+lemma slift_inv_appl: ∀c,W,U,d,h,E. ↑[d, h] E = {c}@W.U →
+                      ∃∃V,T. ↑[d, h] V = W & ↑[d, h] T = U & E = {c}@V.T.
+#c #W #U #d #h * normalize
+[ #b #i #H destruct
+| #b #T #H destruct
+| #b #V #T #H destruct /2 width=5/
+]
+qed-.
+
+theorem slift_slift_le: ∀h1,h2,E,d1,d2. d2 ≤ d1 →
+                        ↑[d2, h2] ↑[d1, h1] E = ↑[d1 + h2, h1] ↑[d2, h2] E.
+#h1 #h2 #E elim E -E
+[ #b #i #d1 #d2 #Hd21 elim (lt_or_ge i d2) #Hid2
+  [ lapply (lt_to_le_to_lt … Hid2 Hd21) -Hd21 #Hid1
+    >(slift_vref_lt … Hid1) >(slift_vref_lt … Hid2)
+    >slift_vref_lt // /2 width=1/
+  | >(slift_vref_ge … Hid2) elim (lt_or_ge i d1) #Hid1
+    [ >(slift_vref_lt … Hid1) >(slift_vref_ge … Hid2)
+      >slift_vref_lt // -d2 /2 width=1/
+    | >(slift_vref_ge … Hid1) >slift_vref_ge /2 width=1/
+      >slift_vref_ge // /2 width=1/
+    ]
+  ]
+| normalize #b #T #IHT #d1 #d2 #Hd21 >IHT // /2 width=1/
+| normalize #b #V #T #IHV #IHT #d1 #d2 #Hd21 >IHV >IHT //
+]
+qed.
+
+theorem slift_slift_be: ∀h1,h2,E,d1,d2. d1 ≤ d2 → d2 ≤ d1 + h1 →
+                        ↑[d2, h2] ↑[d1, h1] E = ↑[d1, h1 + h2] E.
+#h1 #h2 #E elim E -E
+[ #b #i #d1 #d2 #Hd12 #Hd21 elim (lt_or_ge i d1) #Hid1
+  [ lapply (lt_to_le_to_lt … Hid1 Hd12) -Hd12 -Hd21 #Hid2
+    >(slift_vref_lt … Hid1) >(slift_vref_lt … Hid1) /2 width=1/
+  | lapply (transitive_le … (i+h1) Hd21 ?) -Hd21 -Hd12 /2 width=1/ #Hd2
+    >(slift_vref_ge … Hid1) >(slift_vref_ge … Hid1) /2 width=1/
+  ]
+| normalize #b #T #IHT #d1 #d2 #Hd12 #Hd21 >IHT // /2 width=1/
+| normalize #b #V #T #IHV #IHT #d1 #d2 #Hd12 #Hd21 >IHV >IHT //
+]
+qed.
+
+theorem slift_slift_ge: ∀h1,h2,E,d1,d2. d1 + h1 ≤ d2 →
+                        ↑[d2, h2] ↑[d1, h1] E = ↑[d1, h1] ↑[d2 - h1, h2] E.
+#h1 #h2 #E #d1 #d2 #Hd12
+>(slift_slift_le h2 h1) /2 width=1/ <plus_minus_m_m // /2 width=2/
+qed.
+
+(* Note: this is "∀h,d. injective … (slift h d)" *)
+theorem slift_inj: ∀h,E1,E2,d. ↑[d, h] E2 = ↑[d, h] E1 → E2 = E1.
+#h #E1 elim E1 -E1
+[ #b #i #E2 #d #H elim (lt_or_ge i d) #Hid
+  [ >(slift_vref_lt … Hid) in H; #H
+    >(slift_inv_vref_lt … Hid … H) -E2 -d -h //
+  | >(slift_vref_ge … Hid) in H; #H
+    >(slift_inv_vref_ge_plus … H) -E2 // /2 width=1/
+  ]
+| normalize #b #T1 #IHT1 #E2 #d #H
+  elim (slift_inv_abst … H) -H #T2 #HT12 #H destruct
+  >(IHT1 … HT12) -IHT1 -T2 //
+| normalize #b #V1 #T1 #IHV1 #IHT1 #E2 #d #H
+  elim (slift_inv_appl … H) -H #V2 #T2 #HV12 #HT12 #H destruct
+  >(IHV1 … HV12) -IHV1 -V2 >(IHT1 … HT12) -IHT1 -T2 //
+]
+qed-.
+
+theorem slift_inv_slift_le: ∀h1,h2,E1,E2,d1,d2. d2 ≤ d1 →
+                            ↑[d2, h2] E2 = ↑[d1 + h2, h1] E1 →
+                            ∃∃E. ↑[d1, h1] E = E2 & ↑[d2, h2] E = E1.
+#h1 #h2 #E1 elim E1 -E1
+[ #b #i #E2 #d1 #d2 #Hd21 elim (lt_or_ge i (d1+h2)) #Hid1
+  [ >(slift_vref_lt … Hid1) elim (lt_or_ge i d2) #Hid2 #H
+    [ lapply (lt_to_le_to_lt … Hid2 Hd21) -Hd21 -Hid1 #Hid1
+      >(slift_inv_vref_lt … Hid2 … H) -E2 /3 width=3/
+    | elim (slift_inv_vref_ge … H) -H -Hd21 // -Hid2 #Hdh2i #H destruct
+      elim (le_inv_plus_l … Hdh2i) -Hdh2i #Hd2i #Hh2i
+      @(ex2_intro … ({b}#(i-h2))) [ /4 width=1/ ] -Hid1
+      >slift_vref_ge // -Hd2i /3 width=1/ (**) (* auto: needs some help here *)
+    ]
+  | elim (le_inv_plus_l … Hid1) #Hd1i #Hh2i
+    lapply (transitive_le (d2+h2) … Hid1) /2 width=1/ -Hd21 #Hdh2i
+    elim (le_inv_plus_l … Hdh2i) #Hd2i #_
+    >(slift_vref_ge … Hid1) #H -Hid1
+    >(slift_inv_vref_ge_plus … H) -H /2 width=3/ -Hdh2i
+    @(ex2_intro … ({b}#(i-h2))) (**) (* auto: needs some help here *)
+    [ >slift_vref_ge // -Hd1i /3 width=1/
+    | >slift_vref_ge // -Hd2i -Hd1i /3 width=1/
+    ]
+  ]
+| normalize #b #T1 #IHT1 #E2 #d1 #d2 #Hd21 #H
+  elim (slift_inv_abst … H) -H >plus_plus_comm_23 #T2 #HT12 #H destruct
+  elim (IHT1 … HT12) -IHT1 -HT12 /2 width=1/ -Hd21 #T #HT2 #HT1
+  @(ex2_intro … ({b}𝛌.T)) normalize //
+| normalize #b #V1 #T1 #IHV1 #IHT1 #E2 #d1 #d2 #Hd21 #H
+  elim (slift_inv_appl … H) -H #V2 #T2 #HV12 #HT12 #H destruct
+  elim (IHV1 … HV12) -IHV1 -HV12 // #V #HV2 #HV1
+  elim (IHT1 … HT12) -IHT1 -HT12 // -Hd21 #T #HT2 #HT1
+  @(ex2_intro … ({b}@V.T)) normalize //
+]
+qed-.
+
+theorem slift_inv_slift_be: ∀h1,h2,E1,E2,d1,d2. d1 ≤ d2 → d2 ≤ d1 + h1 →
+                            ↑[d2, h2] E2 = ↑[d1, h1 + h2] E1 → ↑[d1, h1] E1 = E2.
+#h1 #h2 #E1 elim E1 -E1
+[ #b #i #E2 #d1 #d2 #Hd12 #Hd21 elim (lt_or_ge i d1) #Hid1
+  [ lapply (lt_to_le_to_lt … Hid1 Hd12) -Hd12 -Hd21 #Hid2
+    >(slift_vref_lt … Hid1) #H >(slift_inv_vref_lt … Hid2 … H) -h2 -E2 -d2 /2 width=1/
+  | lapply (transitive_le … (i+h1) Hd21 ?) -Hd12 -Hd21 /2 width=1/ #Hd2
+    >(slift_vref_ge … Hid1) #H >(slift_inv_vref_ge_plus … H) -E2 /2 width=1/
+  ]
+| normalize #b #T1 #IHT1 #E2 #d1 #d2 #Hd12 #Hd21 #H
+  elim (slift_inv_abst … H) -H #T #HT12 #H destruct
+  >(IHT1 … HT12) -IHT1 -HT12 // /2 width=1/
+| normalize #b #V1 #T1 #IHV1 #IHT1 #E2 #d1 #d2 #Hd12 #Hd21 #H
+  elim (slift_inv_appl … H) -H #V #T #HV12 #HT12 #H destruct
+  >(IHV1 … HV12) -IHV1 -HV12 // >(IHT1 … HT12) -IHT1 -HT12 //
+]
+qed-.
+
+theorem slift_inv_slift_ge: ∀h1,h2,E1,E2,d1,d2. d1 + h1 ≤ d2 →
+                            ↑[d2, h2] E2 = ↑[d1, h1] E1 →
+                            ∃∃E. ↑[d1, h1] E = E2 & ↑[d2 - h1, h2] E = E1.
+#h1 #h2 #E1 #E2 #d1 #d2 #Hd12 #H
+elim (le_inv_plus_l … Hd12) -Hd12 #Hd12 #Hh1d2
+lapply (sym_eq subterms … H) -H >(plus_minus_m_m … Hh1d2) in ⊢ (???%→?); -Hh1d2 #H
+elim (slift_inv_slift_le … Hd12 … H) -H -Hd12 /2 width=3/
+qed-.
+
+definition sliftable: predicate (relation subterms) ≝ λR.
+                      ∀h,F1,F2. R F1 F2 → ∀d. R (↑[d, h] F1) (↑[d, h] F2).
+
+definition sdeliftable_sn: predicate (relation subterms) ≝ λR.
+                           ∀h,G1,G2. R G1 G2 → ∀d,F1. ↑[d, h] F1 = G1 →
+                           ∃∃F2. R F1 F2 & ↑[d, h] F2 = G2.
+(*
+lemma star_sliftable: ∀R. sliftable R → sliftable (star … R).
+#R #HR #h #F1 #F2 #H elim H -F2 // /3 width=3/
+qed.
+
+lemma star_deliftable_sn: ∀R. sdeliftable_sn R → sdeliftable_sn (star … R).
+#R #HR #h #G1 #G2 #H elim H -G2 /2 width=3/
+#G #G2 #_ #HG2 #IHG1 #d #F1 #HFG1
+elim (IHG1 … HFG1) -G1 #F #HF1 #HFG
+elim (HR … HG2 … HFG) -G /3 width=3/
+qed-.
+*)
+lemma lstar_sliftable: ∀S,R. (∀a. sliftable (R a)) →
+                       ∀l. sliftable (lstar S … R l).
+#S #R #HR #l #h #F1 #F2 #H
+@(lstar_ind_l … l F1 H) -l -F1 // /3 width=3/
+qed.
+
+lemma lstar_sdeliftable_sn: ∀S,R. (∀a. sdeliftable_sn (R a)) →
+                            ∀l. sdeliftable_sn (lstar S … R l).
+#S #R #HR #l #h #G1 #G2 #H
+@(lstar_ind_l … l G1 H) -l -G1 /2 width=3/
+#a #l #G1 #G #HG1 #_ #IHG2 #d #F1 #HFG1
+elim (HR … HG1 … HFG1) -G1 #F #HF1 #HFG
+elim (IHG2 … HFG) -G /3 width=3/
+qed-.