]> matita.cs.unibo.it Git - helm.git/blobdiff - matita/matita/lib/lambda/types.ma
some renaming to free the baseuri cic:/matita/lambda
[helm.git] / matita / matita / lib / lambda / types.ma
diff --git a/matita/matita/lib/lambda/types.ma b/matita/matita/lib/lambda/types.ma
deleted file mode 100644 (file)
index 0c07d2e..0000000
+++ /dev/null
@@ -1,192 +0,0 @@
-(*
-    ||M||  This file is part of HELM, an Hypertextual, Electronic        
-    ||A||  Library of Mathematics, developed at the Computer Science     
-    ||T||  Department of the University of Bologna, Italy.                     
-    ||I||                                                                 
-    ||T||  
-    ||A||  This file is distributed under the terms of the 
-    \   /  GNU General Public License Version 2        
-     \ /      
-      V_______________________________________________________________ *)
-
-include "lambda/subst.ma".
-include "basics/list.ma".
-
-
-(*************************** substl *****************************)
-
-let rec substl (G:list T) (N:T) : list T ≝  
-  match G with
-    [ nil ⇒ nil T
-    | cons A D ⇒ ((subst A (length T D) N)::(substl D N))
-    ].
-
-(*
-nlemma substl_cons: ∀A,N.∀G.
-substl (A::G) N = (subst_aux A (length T G) N)::(substl G N).
-//; nqed.
-*)
-
-(*start: ∀G.∀A.∀i.TJ G A (Sort i) → TJ (A::G) (Rel 0) (lift A 0 1)
-  | 
-nlemma length_cons: ∀A.∀G. length T (A::G) = length T G + 1.
-/2/; nqed.*)
-
-(****************************************************************)
-
-(*
-axiom A: nat → nat → Prop.
-axiom R: nat → nat → nat → Prop.
-axiom conv: T → T → Prop.*)
-
-record pts : Type[0] ≝ {
-  Ax: nat → nat → Prop;
-  Re: nat → nat → nat → Prop;
-  Co: T → T → Prop
-  }.
-  
-inductive TJ (p: pts): list T → T → T → Prop ≝
-  | ax : ∀i,j. Ax p i j → TJ p (nil T) (Sort i) (Sort j)
-  | start: ∀G.∀A.∀i.TJ p G A (Sort i) → 
-      TJ p (A::G) (Rel 0) (lift A 0 1)
-  | weak: ∀G.∀A,B,C.∀i.
-     TJ p G A B → TJ p G C (Sort i) → 
-       TJ p (C::G) (lift A 0 1) (lift B 0 1)
-  | prod: ∀G.∀A,B.∀i,j,k. Re p i j k →
-     TJ p G A (Sort i) → TJ p (A::G) B (Sort j) → 
-       TJ p G (Prod A B) (Sort k)
-  | app: ∀G.∀F,A,B,a. 
-     TJ p G F (Prod A B) → TJ p G a A → 
-       TJ p G (App F a) (subst B 0 a)
-  | abs: ∀G.∀A,B,b.∀i. 
-     TJ p (A::G) b B → TJ p G (Prod A B) (Sort i) → 
-       TJ p G (Lambda A b) (Prod A B)
-  | conv: ∀G.∀A,B,C.∀i. Co p B C →
-     TJ p G A B → TJ p G C (Sort i) → TJ p G A C
-  | dummy: ∀G.∀A,B.∀i. 
-     TJ p G A B → TJ p G B (Sort i) → TJ p G (D A) B.
-     
-interpretation "generic type judgement" 'TJT P G A B = (TJ P G A B).
-
-notation "hvbox( G break  ⊢ _{P} A break : B)"
-   non associative with precedence 45
-   for @{'TJT $P $G $A $B}.
-   
-(* ninverter TJ_inv2 for TJ (%?%) : Prop. *)
-
-(**** definitions ****)
-
-inductive Glegal (P:pts) (G: list T) : Prop ≝
-glegalk : ∀A,B. G ⊢_{P} A : B → Glegal P G.
-
-inductive Gterm (P:pts) (G: list T) (A:T) : Prop ≝
-  | is_term: ∀B.G ⊢_{P} A:B → Gterm P G A
-  | is_type: ∀B.G ⊢_{P} B:A → Gterm P G A.
-
-inductive Gtype (P:pts) (G: list T) (A:T) : Prop ≝ 
-gtypek: ∀i.G ⊢_{P} A : Sort i → Gtype P G A.
-
-inductive Gelement (P:pts) (G:list T) (A:T) : Prop ≝
-gelementk: ∀B.G ⊢_{P} A:B → Gtype P G B → Gelement P G A.
-
-inductive Tlegal (P:pts) (A:T) : Prop ≝ 
-tlegalk: ∀G. Gterm P G A → Tlegal P A.
-
-(*
-ndefinition Glegal ≝ λG: list T.∃A,B:T.TJ G A B .
-
-ndefinition Gterm ≝ λG: list T.λA.∃B.TJ G A B ∨ TJ G B A.
-
-ndefinition Gtype ≝ λG: list T.λA.∃i.TJ G A (Sort i).
-
-ndefinition Gelement ≝ λG: list T.λA.∃B.TJ G A B ∨ Gtype G B.
-
-ndefinition Tlegal ≝ λA:T.∃G: list T.Gterm G A.
-*)
-
-(*
-ntheorem free_var1: ∀G.∀A,B,C. TJ G A B →
-subst C A 
-#G; #i; #j; #axij; #Gleg; ncases Gleg; 
-#A; #B; #tjAB; nelim tjAB; /2/; (* bello *) nqed.
-*)
-
-theorem start_lemma1: ∀P,G,i,j. 
-Ax P i j → Glegal P G → G ⊢_{P} Sort i: Sort j.
-#P #G #i #j #axij #Gleg (cases Gleg) 
-#A #B #tjAB (elim tjAB) /2/
-(* bello *) qed.
-
-theorem start_rel: ∀P,G,A,C,n,i,q.
-G ⊢_{P} C: Sort q → G ⊢_{P} Rel n: lift A 0 i → 
- C::G ⊢_{P} Rel (S n): lift A 0 (S i).
-#P #G #A #C #n #i #p #tjC #tjn
- (applyS (weak P G (Rel n))) //. 
-qed.
-  
-theorem start_lemma2: ∀P,G.
-Glegal P G → ∀n. n < |G| → G ⊢_{P} Rel n: lift (nth n T G (Rel O)) 0 (S n).
-#P #G #Gleg (cases Gleg) #A #B #tjAB (elim tjAB) /2/
-  [#i #j #axij #p normalize #abs @(False_ind) @(absurd … abs) // 
-  |#G #A #i #tjA #Hind #m (cases m) /2/
-   #p #Hle @start_rel // @Hind @le_S_S_to_le @Hle
-  |#G #A #B #C #i #tjAB #tjC #Hind1 #_ #m (cases m)
-     /2/ #p #Hle @start_rel // @Hind1 @le_S_S_to_le @Hle
-  ]
-qed.
-
-axiom conv_subst: ∀T,P,Q,N,i.Co T P Q → Co T P[i := N] Q[i := N].
-
-theorem substitution_tj: 
-∀P,E.∀A,B,M. E ⊢_{P} M:B → ∀G,D.∀N. E = D@A::G → G ⊢_{P} N:A → 
-  ((substl D N)@G) ⊢_{P} M[|D| := N]: B[|D| := N].
-#Pts #E #A #B #M #tjMB (elim tjMB)
-  [normalize #i #j #k #G #D #N (cases D) 
-    [normalize #isnil destruct
-    |#P #L normalize #isnil destruct
-    ]
-  |#G #A1 #i #tjA #Hind #G1 #D (cases D) 
-    [#N #Heq #tjN >(delift (lift N O O) A1 O O O ??) //
-     (normalize in Heq) destruct /2/
-    |#H #L #N1 #Heq (normalize in Heq)
-     #tjN1 normalize destruct; (applyS start) /2/
-    ]
-  |#G #P #Q #R #i #tjP #tjR #Hind1 #Hind2 #G1 #D #N
-   (cases D) normalize
-    [#Heq destruct #tjN //
-    |#H #L #Heq #tjN1 destruct;
-       (* napplyS weak non va *)
-     (cut (S (length T L) = (length T L)+0+1)) [//] 
-     #Hee (applyS weak) /2/
-    ]
-  |#G #P #Q #i #j #k #Ax #tjP #tjQ #Hind1 #Hind2
-   #G1 #D #N #Heq #tjN normalize @(prod … Ax);
-    [/2/
-    |(cut (S (length T D) = (length T D)+1)) [//] 
-     #Heq1 <Heq1 @(Hind2 ? (P::D)) normalize //
-    ]
-  |#G #P #Q #R #S #tjP #tjS #Hind1 #Hind2
-   #G1 #D #N #Heq #tjN (normalize in Hind1 ⊢ %)
-   >(plus_n_O (length ? D)) in ⊢ (? ? ? ? (? ? % ?))
-   >(subst_lemma R S N ? 0) (applyS app) /2/
-  |#G #P #Q #R #i #tjR #tjProd #Hind1 #Hind2
-   #G1 #D #N #Heq #tjN normalize
-   (applyS abs) 
-    [normalize in Hind2 /2/
-    |(* napplyS (Hind1 G1 (P::D) N ? tjN); sistemare *)
-     generalize in match (Hind1 G1 (P::D) N ? tjN);
-      [#H (normalize in H) (applyS H) | normalize // ]
-    ]
-  |#G #P #Q #R #i #convQR #tjP #tjQ #Hind1 #Hind2
-   #G1 #D #N #Heq #tjN
-   @(conv …(conv_subst … convQR) ? (Hind2 …)) // @Hind1 //
-  |#G #P #Q #i #tjP #tjQ #Hind1 #Hind2
-   #G1 #D #N #Heq #tjN @dummy /2/ 
-  ]
-qed.
-
-lemma tj_subst_0: ∀P,G,v,w. G ⊢_{P} v : w → ∀t,u. w :: G ⊢_{P} t : u →
-                  G ⊢_{P} t[0≝v] : u[0≝v].
-#P #G #v #w #Hv #t #u #Ht 
-lapply (substitution_tj … Ht ? ([]) … Hv) normalize //
-qed.