]> matita.cs.unibo.it Git - helm.git/blobdiff - matitaB/matita/lib/arithmetics/div_and_mod.ma
fork for Matita version B
[helm.git] / matitaB / matita / lib / arithmetics / div_and_mod.ma
diff --git a/matitaB/matita/lib/arithmetics/div_and_mod.ma b/matitaB/matita/lib/arithmetics/div_and_mod.ma
new file mode 100644 (file)
index 0000000..4044695
--- /dev/null
@@ -0,0 +1,442 @@
+(*
+    ||M||  This file is part of HELM, an Hypertextual, Electronic        
+    ||A||  Library of Mathematics, developed at the Computer Science     
+    ||T||  Department of the University of Bologna, Italy.                     
+    ||I||                                                                 
+    ||T||  
+    ||A||  This file is distributed under the terms of the 
+    \   /  GNU General Public License Version 2        
+     \ /      
+      V_______________________________________________________________ *)
+
+include "arithmetics/nat.ma".
+
+let rec mod_aux p m n: nat ≝
+match p with
+  [ O ⇒ m
+  | S q ⇒ match (leb m n) with
+    [ true ⇒ m
+    | false ⇒ mod_aux q (m-(S n)) n]].
+
+definition mod : nat → nat → nat ≝
+λn,m. match m with 
+  [ O ⇒ n
+  | S p ⇒ mod_aux n n p]. 
+
+interpretation "natural remainder" 'module x y = (mod x y).
+
+let rec div_aux p m n : nat ≝
+match p with
+  [ O ⇒ O
+  | S q ⇒ match (leb m n) with
+    [ true ⇒ O
+    | false ⇒ S (div_aux q (m-(S n)) n)]].
+
+definition div : nat → nat → nat ≝
+λn,m.match m with 
+  [ O ⇒ S n
+  | S p ⇒ div_aux n n p]. 
+
+interpretation "natural divide" 'divide x y = (div x y).
+
+theorem le_mod_aux_m_m: 
+∀p,n,m. n ≤ p → mod_aux p n m ≤ m.
+#p (elim p)
+[ normalize #n #m #lenO @(le_n_O_elim …lenO) //
+| #q #Hind #n #m #len normalize 
+    @(leb_elim n m) normalize //
+    #notlenm @Hind @le_plus_to_minus
+    @(transitive_le … len) /2/
+qed.
+
+theorem lt_mod_m_m: ∀n,m. O < m → n \mod m  < m.
+#n #m (cases m) 
+  [#abs @False_ind /2/
+  |#p #_ normalize @le_S_S /2/ 
+  ]
+qed.
+
+theorem div_aux_mod_aux: ∀p,n,m:nat. 
+n=(div_aux p n m)*(S m) + (mod_aux p n m).
+#p (elim p)
+  [#n #m normalize //
+  |#q #Hind #n #m normalize
+     @(leb_elim n m) #lenm normalize //
+     >associative_plus <(Hind (n-(S m)) m)
+     applyS plus_minus_m_m (* bello *) /2/
+qed.
+
+theorem div_mod: ∀n,m:nat. n=(n / m)*m+(n \mod m).
+#n #m (cases m) normalize //
+qed.
+
+theorem eq_times_div_minus_mod:
+∀a,b:nat. (a / b) * b = a - (a \mod b).
+#a #b (applyS minus_plus_m_m) qed.
+
+inductive div_mod_spec (n,m,q,r:nat) : Prop ≝
+div_mod_spec_intro: r < m → n=q*m+r → div_mod_spec n m q r.
+
+theorem div_mod_spec_to_not_eq_O: 
+  ∀n,m,q,r.div_mod_spec n m q r → m ≠ O.
+#n #m #q #r * /2/ 
+qed.
+
+theorem div_mod_spec_div_mod: 
+  ∀n,m. O < m → div_mod_spec n m (n / m) (n \mod m).
+#n #m #posm % /2/ qed.
+
+theorem div_mod_spec_to_eq :∀ a,b,q,r,q1,r1.
+div_mod_spec a b q r → div_mod_spec a b q1 r1 → q = q1.
+#a #b #q #r #q1 #r1 * #ltrb #spec *  #ltr1b #spec1
+@(leb_elim q q1) #leqq1
+  [(elim (le_to_or_lt_eq … leqq1)) //
+     #ltqq1 @False_ind @(absurd ?? (not_le_Sn_n a))
+     @(lt_to_le_to_lt ? ((S q)*b) ?)
+      [>spec (applyS (monotonic_lt_plus_r … ltrb))
+      |@(transitive_le ? (q1*b)) /2/
+      ]
+  (* this case is symmetric *)
+  |@False_ind @(absurd ?? (not_le_Sn_n a))
+     @(lt_to_le_to_lt ? ((S q1)*b) ?)
+      [>spec1 (applyS (monotonic_lt_plus_r … ltr1b))
+      |cut (q1 < q) [/2/] #ltq1q @(transitive_le ? (q*b)) /2/
+      ]
+  ]
+qed.
+
+theorem div_mod_spec_to_eq2: ∀a,b,q,r,q1,r1.
+  div_mod_spec a b q r → div_mod_spec a b q1 r1 → r = r1.
+#a #b #q #r #q1 #r1 #spec #spec1
+cut (q=q1) [@(div_mod_spec_to_eq … spec spec1)] 
+#eqq (elim spec) #_ #eqa (elim spec1) #_ #eqa1 
+@(injective_plus_r (q*b)) //
+qed.
+
+(* boh
+theorem div_mod_spec_times : ∀ n,m:nat.div_mod_spec ((S n)*m) (S n) m O.
+intros.constructor 1.
+unfold lt.apply le_S_S.apply le_O_n. demodulate. reflexivity.
+(*rewrite < plus_n_O.rewrite < sym_times.reflexivity.*)
+qed. *)
+
+lemma div_plus_times: ∀m,q,r:nat. r < m → (q*m+r)/ m = q.
+#m #q #r #ltrm
+@(div_mod_spec_to_eq … (div_mod_spec_div_mod ???)) /2/
+qed.
+
+lemma mod_plus_times: ∀m,q,r:nat. r < m → (q*m+r) \mod m = r. 
+#m #q #r #ltrm
+@(div_mod_spec_to_eq2 … (div_mod_spec_div_mod ???)) /2/
+qed.
+
+(* some properties of div and mod *)
+theorem div_times: ∀a,b:nat. O < b → a*b/b = a.
+#a #b #posb 
+@(div_mod_spec_to_eq (a*b) b … O (div_mod_spec_div_mod …))
+// @div_mod_spec_intro // qed.
+
+theorem div_n_n: ∀n:nat. O < n → n / n = 1.
+/2/ qed.
+
+theorem eq_div_O: ∀n,m. n < m → n / m = O.
+#n #m #ltnm 
+@(div_mod_spec_to_eq n m (n/m) … n (div_mod_spec_div_mod …))
+/2/ qed. 
+
+theorem mod_n_n: ∀n:nat. O < n → n \mod n = O.
+#n #posn 
+@(div_mod_spec_to_eq2 n n … 1 0 (div_mod_spec_div_mod …))
+/2/ qed. 
+
+theorem mod_S: ∀n,m:nat. O < m → S (n \mod m) < m → 
+((S n) \mod m) = S (n \mod m).
+#n #m #posm #H 
+@(div_mod_spec_to_eq2 (S n) m … (n / m) ? (div_mod_spec_div_mod …))
+// @div_mod_spec_intro// (applyS eq_f) //
+qed.
+
+theorem mod_O_n: ∀n:nat.O \mod n = O.
+/2/ qed.
+
+theorem lt_to_eq_mod: ∀n,m:nat. n < m → n \mod m = n.
+#n #m #ltnm 
+@(div_mod_spec_to_eq2 n m (n/m) … O n (div_mod_spec_div_mod …))
+/2/ qed. 
+
+(*
+theorem mod_1: ∀n:nat. mod n 1 = O.
+#n @sym_eq @le_n_O_to_eq
+@le_S_S_to_le /2/ qed.
+
+theorem div_1: ∀n:nat. div n 1 = n.
+#n @sym_eq napplyS (div_mod n 1) qed. *)
+
+theorem or_div_mod: ∀n,q. O < q →
+  ((S (n \mod q)=q) ∧ S n = (S (div n q)) * q ∨
+  ((S (n \mod q)<q) ∧ S n = (div n q) * q + S (n\mod q))).
+#n #q #posq 
+(elim (le_to_or_lt_eq ?? (lt_mod_m_m n q posq))) #H
+  [%2 % // (applyS eq_f) //
+  |%1 % // /demod/ <H in ⊢(? ? ? (? % ?)) @eq_f//
+  ]
+qed.
+
+(* injectivity *)
+theorem injective_times_r: 
+  ∀n:nat. O < n → injective nat nat (λm:nat.n*m).
+#n #posn #a #b #eqn 
+<(div_times a n posn) <(div_times b n posn) // 
+qed.
+
+theorem injective_times_l: 
+    ∀n:nat. O < n → injective nat nat (λm:nat.m*n).
+/2/ qed.
+
+(* n_divides computes the pair (div,mod) 
+(* p is just an upper bound, acc is an accumulator *)
+let rec n_divides_aux p n m acc \def
+  match n \mod m with
+  [ O \Rightarrow 
+    match p with
+      [ O \Rightarrow pair nat nat acc n
+      | (S p) \Rightarrow n_divides_aux p (n / m) m (S acc)]
+  | (S a) \Rightarrow pair nat nat acc n].
+
+(* n_divides n m = <q,r> if m divides n q times, with remainder r *)
+definition n_divides \def \lambda n,m:nat.n_divides_aux n n m O. *)
+
+(* inequalities *)
+
+theorem lt_div_S: ∀n,m. O < m → n < S(n / m)*m.
+#n #m #posm (change with (n < m +(n/m)*m))
+>(div_mod n m) in ⊢ (? % ?) >commutative_plus 
+@monotonic_lt_plus_l @lt_mod_m_m // 
+qed.
+
+theorem le_div: ∀n,m. O < n → m/n ≤ m.
+#n #m #posn
+>(div_mod m n) in ⊢ (? ? %) @(transitive_le ? (m/n*n)) /2/
+qed.
+
+theorem le_plus_mod: ∀m,n,q. O < q →
+(m+n) \mod q ≤ m \mod q + n \mod q .
+#m #n #q #posq
+(elim (decidable_le q (m \mod q + n \mod q))) #Hle
+  [@(transitive_le … Hle) @le_S_S_to_le @le_S /2/
+  |cut ((m+n)\mod q = m\mod q+n\mod q) //
+     @(div_mod_spec_to_eq2 … (m/q + n/q) ? (div_mod_spec_div_mod … posq)).
+     @div_mod_spec_intro
+      [@not_le_to_lt //
+      |>(div_mod n q) in ⊢ (? ? (? ? %) ?)
+       (applyS (eq_f … (λx.plus x (n \mod q))))
+       >(div_mod m q) in ⊢ (? ? (? % ?) ?)
+       (applyS (eq_f … (λx.plus x (m \mod q)))) //
+      ]
+  ]
+qed.
+
+theorem le_plus_div: ∀m,n,q. O < q →
+  m/q + n/q \le (m+n)/q.
+#m #n #q #posq @(le_times_to_le … posq)
+@(le_plus_to_le_r ((m+n) \mod q))
+(* bruttino *)
+>commutative_times in ⊢ (? ? %) <div_mod
+>(div_mod m q) in ⊢ (? ? (? % ?)) >(div_mod n q) in ⊢ (? ? (? ? %))
+>commutative_plus in ⊢ (? ? (? % ?)) >associative_plus in ⊢ (? ? %)
+<associative_plus in ⊢ (? ? (? ? %)) (applyS monotonic_le_plus_l) /2/
+qed.
+
+theorem le_times_to_le_div: ∀a,b,c:nat. 
+  O < b → b*c ≤ a → c ≤ a/b.
+#a #b #c #posb #Hle
+@le_S_S_to_le @(lt_times_n_to_lt_l b) @(le_to_lt_to_lt ? a)/2/
+qed.
+
+theorem le_times_to_le_div2: ∀m,n,q. O < q → 
+  n ≤ m*q → n/q ≤ m.
+#m #n #q #posq #Hle
+@(le_times_to_le q ? ? posq) @(le_plus_to_le (n \mod q)) /2/
+qed.
+
+(* da spostare 
+theorem lt_m_nm: ∀n,m. O < m → 1 < n → m < n*m.
+/2/ qed. *)
+   
+theorem lt_times_to_lt_div: ∀m,n,q. n < m*q → n/q < m.
+#m #n #q #Hlt
+@(lt_times_n_to_lt_l q …) @(lt_plus_to_lt_l (n \mod q)) /2/
+qed.
+
+(*
+theorem lt_div: ∀n,m. O < m → 1 < n → m/n < m.
+#n #m #posm #lt1n
+@lt_times_to_lt_div (applyS lt_m_nm) //.
+qed. 
+  
+theorem le_div_plus_S: ∀m,n,q. O < q →
+(m+n)/q \le S(m/q + n/q).
+#m #n #q #posq
+@le_S_S_to_le @lt_times_to_lt_div
+@(lt_to_le_to_lt … (lt_plus … (lt_div_S m … posq) (lt_div_S n … posq)))
+//
+qed. *)
+
+theorem le_div_S_S_div: ∀n,m. O < m → (S n)/m ≤ S (n /m).
+#n #m #posm @le_times_to_le_div2 /2/
+qed.
+
+theorem le_times_div_div_times: ∀a,n,m.O < m → 
+a*(n/m) ≤ a*n/m. 
+#a #n #m #posm @le_times_to_le_div /2/
+qed.
+
+theorem monotonic_div: ∀n.O < n →
+  monotonic nat le (λm.div m n).
+#n #posn #a #b #leab @le_times_to_le_div/2/
+qed.
+
+theorem pos_div: ∀n,m:nat. O < m → O < n → n \mod m = O → 
+  O < n / m.
+#n #m #posm #posn #mod0
+@(lt_times_n_to_lt_l m)// (* MITICO *)
+qed.
+
+(*
+theorem lt_div_n_m_n: ∀n,m:nat. 1 < m → O < n → n / m < n.
+#n #m #ltm #posn
+@(leb_elim 1 (n / m))/2/ (* MITICO *)
+qed. *)
+
+theorem eq_div_div_div_times: ∀n,m,q. O < n → O < m →
+ q/n/m = q/(n*m).
+#n #m #q #posn #posm
+@(div_mod_spec_to_eq … (q\mod n+n*(q/n\mod m)) … (div_mod_spec_div_mod …)) /2/
+@div_mod_spec_intro // @(lt_to_le_to_lt ? (n*(S (q/n\mod m))))
+  [(applyS monotonic_lt_plus_l) /2/
+  |@monotonic_le_times_r/2/
+  ]
+qed.
+
+theorem eq_div_div_div_div: ∀n,m,q. O < n → O < m →
+q/n/m = q/m/n.
+#n #m #q #posn #posm
+@(trans_eq ? ? (q/(n*m)))
+  [/2/
+  |@sym_eq (applyS eq_div_div_div_times) //
+  ]
+qed.
+
+(*
+theorem SSO_mod: \forall n,m. O < m \to (S(S O))*n/m = (n/m)*(S(S O)) + mod ((S(S O))*n/m) (S(S O)).
+intros.
+rewrite < (lt_O_to_div_times n (S(S O))) in ⊢ (? ? ? (? (? (? % ?) ?) ?))
+  [rewrite > eq_div_div_div_div
+    [rewrite > sym_times in ⊢ (? ? ? (? (? (? (? % ?) ?) ?) ?)).
+     apply div_mod.
+     apply lt_O_S
+    |apply lt_O_S
+    |assumption
+    ]
+  |apply lt_O_S
+  ]
+qed. *)
+(* Forall a,b : N. 0 < b \to b * (a/b) <= a < b * (a/b +1) *)
+(* The theorem is shown in two different parts: *)
+(*
+theorem lt_to_div_to_and_le_times_lt_S: \forall a,b,c:nat.
+O \lt b \to a/b = c \to (b*c \le a \land a \lt b*(S c)).
+intros.
+split
+[ rewrite < H1.
+  rewrite > sym_times.
+  rewrite > eq_times_div_minus_mod
+  [ apply (le_minus_m a (a \mod b))
+  | assumption
+  ]
+| rewrite < (times_n_Sm b c).
+  rewrite < H1.
+  rewrite > sym_times.
+  rewrite > (div_mod a b) in \vdash (? % ?)
+  [ rewrite > (sym_plus b ((a/b)*b)).
+    apply lt_plus_r.
+    apply lt_mod_m_m.
+    assumption
+  | assumption
+  ]
+]
+qed. *)
+
+theorem lt_to_le_times_to_lt_S_to_div: ∀a,c,b:nat.
+O < b → (b*c) ≤ a → a < (b*(S c)) → a/b = c.
+#a #c #b #posb#lea #lta
+@(div_mod_spec_to_eq … (a-b*c) (div_mod_spec_div_mod … posb …))
+@div_mod_spec_intro [@lt_plus_to_minus // |/2/]
+qed.
+
+theorem div_times_times: ∀a,b,c:nat. O < c → O < b → 
+  (a/b) = (a*c)/(b*c).
+#a #b #c #posc #posb
+>(commutative_times b) <eq_div_div_div_times //
+>div_times //
+qed.
+
+theorem times_mod: ∀a,b,c:nat.
+O < c → O < b → (a*c) \mod (b*c) = c*(a\mod b).
+#a #b #c #posc #posb
+@(div_mod_spec_to_eq2 (a*c) (b*c) (a/b) ((a*c) \mod (b*c)) (a/b) (c*(a \mod b)))
+  [>(div_times_times … posc) // @div_mod_spec_div_mod /2/
+  |@div_mod_spec_intro
+    [applyS (monotonic_lt_times_r … c posc) /2/
+    |(applyS (eq_f …(λx.x*c))) //
+    ]
+  ]
+qed.
+
+theorem le_div_times_m: ∀a,i,m. O < i → O < m →
+ (a * (m / i)) / m ≤ a / i.
+#a #i #m #posi #posm
+@(transitive_le ? ((a*m/i)/m))
+  [@monotonic_div /2/
+  |>eq_div_div_div_div // >div_times //
+  ]
+qed.
+
+(* serve ?
+theorem le_div_times_Sm: ∀a,i,m. O < i → O < m →
+a / i ≤ (a * S (m / i))/m.
+intros.
+apply (trans_le ? ((a * S (m/i))/((S (m/i))*i)))
+  [rewrite < (eq_div_div_div_times ? i)
+    [rewrite > lt_O_to_div_times
+      [apply le_n
+      |apply lt_O_S
+      ]
+    |apply lt_O_S
+    |assumption
+    ]
+  |apply le_times_to_le_div
+    [assumption
+    |apply (trans_le ? (m*(a*S (m/i))/(S (m/i)*i)))
+      [apply le_times_div_div_times.
+       rewrite > (times_n_O O).
+       apply lt_times
+        [apply lt_O_S
+        |assumption
+        ]
+      |rewrite > sym_times.
+       apply le_times_to_le_div2
+        [rewrite > (times_n_O O).
+         apply lt_times
+          [apply lt_O_S
+          |assumption
+          ]
+        |apply le_times_r.
+         apply lt_to_le.
+         apply lt_div_S.
+         assumption
+        ]
+      ]
+    ]
+  ]
+qed. *)