]> matita.cs.unibo.it Git - helm.git/blobdiff - weblib/tutorial/chapter2.ma
section in chapter 2
[helm.git] / weblib / tutorial / chapter2.ma
index fffe5e1cce96f933c9395dcaacfa42cb2953f89b..7260a33aff9d5ef96b975289df80d1dbe2c675f8 100644 (file)
@@ -1,3 +1,4 @@
+\ 5h1 class="section"\ 6Induction and Recursion\ 5/h1\ 6
 include "basics/types.ma".
 
 (* Most of the types we have seen so far are enumerated types, composed by a 
@@ -29,7 +30,9 @@ match n with
 | S a ⇒ \ 5a href="cic:/matita/tutorial/chapter2/nat.con(0,2,0)"\ 6S\ 5/a\ 6 (add a m)
 ].
 
-(* It is worth to observe that the previous algorithm works by recursion over the
+(*
+\ 5h2 class="section"\ 6Elimination\ 5/h2\ 6
+It is worth to observe that the previous algorithm works by recursion over the
 first argument. This means that, for instance, (add O x) will reduce to x, as 
 expected, but (add x O) is stuck. 
 How can we prove that, for a generic x, (add x O) = x? The mathematical tool to do 
@@ -96,7 +99,9 @@ definition nat_of_bool ≝ λb. match b with
 
 definition twice ≝ λn.\ 5a href="cic:/matita/tutorial/chapter2/add.fix(0,0,1)"\ 6add\ 5/a\ 6 n n. 
 
-(* We are interested to prove that for any natural number n there exists a natural 
+(* 
+\ 5h2 class="section"\ 6Existential\ 5/h2\ 6
+We are interested to prove that for any natural number n there exists a natural 
 number m that is the integer half of n. This will give us the opportunity to 
 introduce new connectives and quantifiers and, later on, to make some interesting 
 consideration on proofs and computations. *)
@@ -120,7 +125,9 @@ also automatically close G1.
 *)
   [@(\ 5a href="cic:/matita/basics/logic/ex.con(0,1,2)"\ 6ex_intro\ 5/a\ 6 … \ 5a href="cic:/matita/tutorial/chapter2/nat.con(0,1,0)"\ 6O\ 5/a\ 6) %1 //
 
-(* The case of G2 is more complex. We should start introducing x and the 
+(* 
+\ 5h2 class="section"\ 6Destructuration\ 5/h2\ 6
+The case of G2 is more complex. We should start introducing x and the 
 inductive hypothesis
      IH: ∃m. x = add m m ∨ x = S (add m m) 
 At this point we should assume the existence of m enjoying the inductive 
@@ -156,71 +163,76 @@ of (S x) is hence (S m), and have to follow the left branch of the disjunction.
   ]
 qed. 
 
-(* Instead of proving the existence of a number corresponding to the half of n, 
+(* 
+\ 5h2 class="section"\ 6Computing vs. Proving\ 5/h2\ 6
+Instead of proving the existence of a number corresponding to the half of n, 
 we could be interested in computing it. The best way to do it is to define this 
-division operation together with the remainder, that in our case is just a boolean 
-value: tt if the input term is even, and ff if the input term is odd. Since we 
-must return a pair, we could use a suitably defined record type, or simply a product 
-type nat × bool, defined in the basic library. The product type is just a sort of 
-general purpose record, with standard fields fst and snd, called projections. 
-A pair of values n and m is written (pair … m n) or \langle n,m \rangle - 
-visually rendered as 〈n,m〉 
+division operation together with the remainder, that in our case is just a 
+boolean value: tt if the input term is even, and ff if the input term is odd. 
+Since we must return a pair, we could use a suitably defined record type, or 
+simply a product type nat × bool, defined in the basic library. The product type 
+is just a sort of general purpose record, with standard fields fst and snd, called 
+projections. 
+A pair of values n and m is written (pair … m n) or \langle n,m \rangle - visually 
+rendered as 〈n,m〉 
 
 We first write down the function, and then discuss it.*)
 
 let rec div2 n ≝ 
 match n with
-[ O ⇒ \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6\ 5a href="cic:/matita/tutorial/chapter2/nat.con(0,1,0)"\ 6O\ 5/a\ 6,\ 5a href="cic:/matita/tutorial/chapter2/bool.con(0,2,0)"\ 6ff\ 5/a\ 6
+[ O ⇒ \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6\ 5a href="cic:/matita/tutorial/chapter2/nat.con(0,1,0)"\ 6O\ 5/a\ 6\ 5span class="error" title="Parse error: [sym,] expected after [term level 19] (in [term])"\ 6\ 5/span\ 6,\ 5a href="cic:/matita/tutorial/chapter2/bool.con(0,2,0)"\ 6ff\ 5/a\ 6
 | S a ⇒ \ 5span style="text-decoration: underline;"\ 6\ 5/span\ 6
    let p ≝ (div2 a) in
-   match (\ 5a href="cic:/matita/basics/types/snd.def(1)"\ 6snd\ 5/a\ 6 … p) with
-   [ tt ⇒ \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6\ 5a href="cic:/matita/tutorial/chapter2/nat.con(0,2,0)"\ 6S\ 5/a\ 6 (\ 5a href="cic:/matita/basics/types/fst.def(1)"\ 6fst\ 5/a\ 6 … p),\ 5a href="cic:/matita/tutorial/chapter2/bool.con(0,2,0)"\ 6ff\ 5/a\ 6〉 
-   | ff ⇒ \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6\ 5a href="cic:/matita/basics/types/fst.def(1)"\ 6fst\ 5/a\ 6 … p, \ 5a href="cic:/matita/tutorial/chapter2/bool.con(0,1,0)"\ 6tt\ 5/a\ 6
+   match (\ 5a href="cic:/matita/basics/types/snd.fix(0,2,1)"\ 6snd\ 5/a\ 6\ 5span class="error" title="Parse error: SYMBOL ':' or RPAREN expected after [term] (in [term])"\ 6\ 5/span\ 6 … p) with
+   [ tt ⇒ \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6\ 5a href="cic:/matita/tutorial/chapter2/nat.con(0,2,0)"\ 6S\ 5/a\ 6 (\ 5a href="cic:/matita/basics/types/fst.fix(0,2,1)"\ 6fst\ 5/a\ 6 … p),\ 5a href="cic:/matita/tutorial/chapter2/bool.con(0,2,0)"\ 6ff\ 5/a\ 6〉 
+   | ff ⇒ \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6\ 5a href="cic:/matita/basics/types/fst.fix(0,2,1)"\ 6fst\ 5/a\ 6 … p, \ 5a href="cic:/matita/tutorial/chapter2/bool.con(0,1,0)"\ 6tt\ 5/a\ 6
    ]
 ]. 
 
 (* The function is computed by recursion over the input n. If n is 0, then the 
 quotient is 0 and the remainder is tt. If n = S a, we start computing the half 
 of a, say 〈q,b〉. Then we have two cases according to the possible values of b: 
-if b is tt, then we must return 〈q,ff〉, while if b = ff then we must return 〈S q,tt〉.
-
-It is important to point out the deep, substantial analogy between the algorithm for 
-computing div2 and the the proof of ex_half. In particular ex_half returns a 
-proof of the kind ∃n.A(n)∨B(n): the really informative content in it is the witness
-n and a boolean indicating which one between the two conditions A(n) and B(n) is met.
-This is precisely the quotient-remainder pair returned by div2.
-In both cases we proceed by recurrence (respectively, induction or recursion) over the 
-input argument n. In case n = 0, we conclude the proof in ex_half by providing the
-witness O and a proof of A(O); this corresponds to returning the pair 〈O,ff〉 in div2.
-Similarly, in the inductive case n = S a, we must exploit the inductive hypothesis 
-for a (i.e. the result of the recursive call), distinguishing two subcases according 
-to the the two possibilites A(a) or B(a) (i.e. the two possibile values of the remainder 
-for a). The reader is strongly invited to check all remaining details.
+if b is tt, then we must return 〈q,ff〉, while if b = ff then we must return 
+〈S q,tt〉.
+
+It is important to point out the deep, substantial analogy between the algorithm 
+for computing div2 and the the proof of ex_half. In particular ex_half returns a 
+proof of the kind ∃n.A(n)∨B(n): the really informative content in it is the 
+witness n and a boolean indicating which one between the two conditions A(n) and 
+B(n) is met. This is precisely the quotient-remainder pair returned by div2.
+In both cases we proceed by recurrence (respectively, induction or recursion) over 
+the input argument n. In case n = 0, we conclude the proof in ex_half by providing 
+the witness O and a proof of A(O); this corresponds to returning the pair 〈O,ff〉 in 
+div2. Similarly, in the inductive case n = S a, we must exploit the inductive 
+hypothesis for a (i.e. the result of the recursive call), distinguishing two subcases 
+according to the the two possibilites A(a) or B(a) (i.e. the two possibile values of 
+the remainder for a). The reader is strongly invited to check all remaining details.
 
 Let us now prove that our div2 function has the expected behaviour.
 *)
 
-lemma surjective_pairing: ∀A,B.∀p:A\ 5a title="Product" href="cic:/fakeuri.def(1)"\ 6×\ 5/a\ 6B. p \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6\ 5a href="cic:/matita/basics/types/fst.def(1)"\ 6fst\ 5/a\ 6 … p,\ 5a title="pair pi2" href="cic:/fakeuri.def(1)"\ 6\snd\ 5/a\ 6 … p〉.
+lemma surjective_pairing: ∀A,B.∀p:A\ 5a title="Product" href="cic:/fakeuri.def(1)"\ 6×\ 5/a\ 6B. p \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6\ 5a href="cic:/matita/basics/types/fst.fix(0,2,1)"\ 6fst\ 5/a\ 6 … p,\ 5a title="pair pi2" href="cic:/fakeuri.def(1)"\ 6\snd\ 5/a\ 6\ 5span class="error" title="Parse error: [sym〉] or [sym,] expected after [term level 19] (in [term])"\ 6\ 5/span\ 6 … p〉.
 #A #B * // qed.
 
 lemma div2SO: ∀n,q. \ 5a href="cic:/matita/tutorial/chapter2/div2.fix(0,0,2)"\ 6div2\ 5/a\ 6 n \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6q,\ 5a href="cic:/matita/tutorial/chapter2/bool.con(0,2,0)"\ 6ff\ 5/a\ 6〉 → \ 5a href="cic:/matita/tutorial/chapter2/div2.fix(0,0,2)"\ 6div2\ 5/a\ 6 (\ 5a href="cic:/matita/tutorial/chapter2/nat.con(0,2,0)"\ 6S\ 5/a\ 6 n) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6\ 5span style="text-decoration: underline;"\ 6\ 5/span\ 6q,\ 5a href="cic:/matita/tutorial/chapter2/bool.con(0,1,0)"\ 6tt\ 5/a\ 6〉.
 #n #q #H normalize >H normalize // qed.
 
-lemma div2S1: ∀n,q. \ 5a href="cic:/matita/tutorial/chapter2/div2.fix(0,0,2)"\ 6div2\ 5/a\ 6 n \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6q,\ 5a href="cic:/matita/tutorial/chapter2/bool.con(0,1,0)"\ 6tt\ 5/a\ 6〉 → \ 5a href="cic:/matita/tutorial/chapter2/div2.fix(0,0,2)"\ 6div2\ 5/a\ 6 (\ 5a href="cic:/matita/tutorial/chapter2/nat.con(0,2,0)"\ 6S\ 5/a\ 6 n) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6\ 5a href="cic:/matita/tutorial/chapter2/nat.con(0,2,0)"\ 6S\ 5/a\ 6 q,\ 5a href="cic:/matita/tutorial/chapter2/bool.con(0,2,0)"\ 6ff\ 5/a\ 6〉.
+lemma div2S1: ∀n,q. \ 5a href="cic:/matita/tutorial/chapter2/div2.fix(0,0,2)"\ 6div2\ 5/a\ 6 n \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6q,\ 5a href="cic:/matita/tutorial/chapter2/bool.con(0,1,0)"\ 6tt\ 5/a\ 6〉 → \ 5a href="cic:/matita/tutorial/chapter2/div2.fix(0,0,2)"\ 6div2\ 5/a\ 6 (\ 5a href="cic:/matita/tutorial/chapter2/nat.con(0,2,0)"\ 6S\ 5/a\ 6 n) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6\ 5span class="error" title="Parse error: [term] expected after [sym=] (in [term])"\ 6\ 5/span\ 6 \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6\ 5a href="cic:/matita/tutorial/chapter2/nat.con(0,2,0)"\ 6S\ 5/a\ 6 q,\ 5a href="cic:/matita/tutorial/chapter2/bool.con(0,2,0)"\ 6ff\ 5/a\ 6〉.
 #n #q #H normalize >H normalize // qed.
 
 lemma div2_ok: ∀n,q,r. \ 5a href="cic:/matita/tutorial/chapter2/div2.fix(0,0,2)"\ 6div2\ 5/a\ 6 n \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6q,r〉 → n \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter2/add.fix(0,0,1)"\ 6add\ 5/a\ 6 (\ 5a href="cic:/matita/tutorial/chapter2/twice.def(2)"\ 6twice\ 5/a\ 6 q) (\ 5a href="cic:/matita/tutorial/chapter2/nat_of_bool.def(1)"\ 6nat_of_bool\ 5/a\ 6 r).
 #n elim n
   [#q #r normalize #H destruct //
   |#a #Hind #q #r 
-   cut (\ 5a href="cic:/matita/tutorial/chapter2/div2.fix(0,0,2)"\ 6div2\ 5/a\ 6 a \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6\ 5a href="cic:/matita/basics/types/fst.def(1)"\ 6fst\ 5/a\ 6 … (\ 5a href="cic:/matita/tutorial/chapter2/div2.fix(0,0,2)"\ 6div2\ 5/a\ 6 a), \ 5a href="cic:/matita/basics/types/snd.def(1)"\ 6snd\ 5/a\ 6 … (\ 5a href="cic:/matita/tutorial/chapter2/div2.fix(0,0,2)"\ 6div2\ 5/a\ 6 a)〉) [//] 
-   cases (\ 5a href="cic:/matita/basics/types/snd.def(1)"\ 6snd\ 5/a\ 6 … (\ 5a href="cic:/matita/tutorial/chapter2/div2.fix(0,0,2)"\ 6div2\ 5/a\ 6 a))
-    [#H >(\ 5a href="cic:/matita/tutorial/chapter2/div2S1.def(3)"\ 6div2S1\ 5/a\ 6 … H) #H1 destruct @\ 5a href="cic:/matita/basics/logic/eq_f.def(3)"\ 6eq_f\ 5/a\ 6 \ 5span style="text-decoration: underline;"\ 6>\ 5/span\ 6\ 5a href="cic:/matita/tutorial/chapter2/add_S.def(2)"\ 6add_S\ 5/a\ 6 <\ 5a href="cic:/matita/tutorial/chapter2/add_S.def(2)"\ 6add_S\ 5/a\ 6 @(Hind … H) 
+   cut (\ 5a href="cic:/matita/tutorial/chapter2/div2.fix(0,0,2)"\ 6div2\ 5/a\ 6 a \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6\ 5a href="cic:/matita/basics/types/fst.fix(0,2,1)"\ 6fst\ 5/a\ 6 … (\ 5a href="cic:/matita/tutorial/chapter2/div2.fix(0,0,2)"\ 6div2\ 5/a\ 6 a), \ 5a href="cic:/matita/basics/types/snd.fix(0,2,1)"\ 6snd\ 5/a\ 6 … (\ 5a href="cic:/matita/tutorial/chapter2/div2.fix(0,0,2)"\ 6div2\ 5/a\ 6 a)〉) [//] 
+   cases (\ 5a href="cic:/matita/basics/types/snd.fix(0,2,1)"\ 6snd\ 5/a\ 6 … (\ 5a href="cic:/matita/tutorial/chapter2/div2.fix(0,0,2)"\ 6div2\ 5/a\ 6 a))
+    [#H >(\ 5a href="cic:/matita/tutorial/chapter2/div2S1.def(3)"\ 6div2S1\ 5/a\ 6 … H) #H1 destruct @\ 5a href="cic:/matita/basics/logic/eq_f.def(3)"\ 6eq_f\ 5/a\ 6 \ 5span style="text-decoration: underline;"\ 6>\ 5/span\ 6\ 5a href="cic:/matita/tutorial/chapter2/add_S.def(2)"\ 6add_S\ 5/a\ 6 whd in ⊢ (???%); <\ 5a href="cic:/matita/tutorial/chapter2/add_S.def(2)"\ 6add_S\ 5/a\ 6 @(Hind … H) 
     |#H >(\ 5a href="cic:/matita/tutorial/chapter2/div2SO.def(3)"\ 6div2SO\ 5/a\ 6 … H) #H1 destruct >\ 5a href="cic:/matita/tutorial/chapter2/add_S.def(2)"\ 6add_S\ 5/a\ 6 @\ 5a href="cic:/matita/basics/logic/eq_f.def(3)"\ 6eq_f\ 5/a\ 6 @(Hind … H) 
     ]
 qed.
 
-(* There is still another possibility, however, namely to mix the program and its 
+(* \ 5h2 class="section"\ 6Mixing proofs and computations\ 5/h2\ 6
+There is still another possibility, however, namely to mix the program and its 
 specification into a single entity. The idea is to refine the output type of the 
 div2 function: it should not be just a generic pair 〈q,r〉 of natural numbers but a 
 specific pair satisfying the specification of the function. In other words, we need 
@@ -246,7 +258,7 @@ definition qr_spec ≝ λn.λp.∀q,r. p \ 5a title="leibnitz's equality" href="ci
 (* We can now construct a function from n to {p|qr_spec n p} by composing the objects
 we already have *)
 
-definition div2P: ∀n.\ 5a href="cic:/matita/tutorial/chapter2/Sub.ind(1,0,2)"\ 6 Sub\ 5/a\ 6 (\ 5a href="cic:/matita/tutorial/chapter2/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6\ 5a title="Product" href="cic:/fakeuri.def(1)"\ 6×\ 5/a\ 6\ 5span style="text-decoration: underline;"\ 6\ 5a href="cic:/matita/tutorial/chapter2/bool.ind(1,0,0)"\ 6bool\ 5/a\ 6\ 5/span\ 6) (\ 5a href="cic:/matita/tutorial/chapter2/qr_spec.def(3)"\ 6qr_spec\ 5/a\ 6 n) ≝ λn.
+definition div2P: ∀n. \ 5a href="cic:/matita/tutorial/chapter2/Sub.ind(1,0,2)"\ 6Sub\ 5/a\ 6 (\ 5a href="cic:/matita/tutorial/chapter2/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6\ 5a title="Product" href="cic:/fakeuri.def(1)"\ 6×\ 5/a\ 6\ 5span style="text-decoration: underline;"\ 6\ 5a href="cic:/matita/tutorial/chapter2/bool.ind(1,0,0)"\ 6bool\ 5/a\ 6\ 5/span\ 6) (\ 5a href="cic:/matita/tutorial/chapter2/qr_spec.def(3)"\ 6qr_spec\ 5/a\ 6 n) ≝ λn.
  \ 5a href="cic:/matita/tutorial/chapter2/Sub.con(0,1,2)"\ 6mk_Sub\ 5/a\ 6 ?? (\ 5a href="cic:/matita/tutorial/chapter2/div2.fix(0,0,2)"\ 6div2\ 5/a\ 6 n) (\ 5a href="cic:/matita/tutorial/chapter2/div2_ok.def(4)"\ 6div2_ok\ 5/a\ 6 n).
 
 (* But we can also try do directly build such an object *)
@@ -255,10 +267,11 @@ definition div2Pagain : ∀n.\ 5a href="cic:/matita/tutorial/chapter2/Sub.ind(1,0,
 #n elim n
   [@(\ 5a href="cic:/matita/tutorial/chapter2/Sub.con(0,1,2)"\ 6mk_Sub\ 5/a\ 6 … \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6\ 5a href="cic:/matita/tutorial/chapter2/nat.con(0,1,0)"\ 6O\ 5/a\ 6,\ 5a href="cic:/matita/tutorial/chapter2/bool.con(0,2,0)"\ 6ff\ 5/a\ 6〉) normalize #q #r #H destruct //
   |#a * #p #qrspec 
-   cut (p \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6\ 5a href="cic:/matita/basics/types/fst.def(1)"\ 6fst\ 5/a\ 6 … p, \ 5a href="cic:/matita/basics/types/snd.def(1)"\ 6snd\ 5/a\ 6 … p〉) [//] 
-   cases (\ 5a href="cic:/matita/basics/types/snd.def(1)"\ 6snd\ 5/a\ 6 … p)
-    [#H @(\ 5a href="cic:/matita/tutorial/chapter2/Sub.con(0,1,2)"\ 6mk_Sub\ 5/a\ 6 … \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6\ 5a href="cic:/matita/tutorial/chapter2/nat.con(0,2,0)"\ 6S\ 5/a\ 6 (\ 5a href="cic:/matita/basics/types/fst.def(1)"\ 6fst\ 5/a\ 6 … p),\ 5a href="cic:/matita/tutorial/chapter2/bool.con(0,2,0)"\ 6ff\ 5/a\ 6〉) whd #q #r #H1 destruct @\ 5a href="cic:/matita/basics/logic/eq_f.def(3)"\ 6eq_f\ 5/a\ 6 \ 5span style="text-decoration: underline;"\ 6>\ 5/span\ 6\ 5a href="cic:/matita/tutorial/chapter2/add_S.def(2)"\ 6add_S\ 5/a\ 6 <\ 5a href="cic:/matita/tutorial/chapter2/add_S.def(2)"\ 6add_S\ 5/a\ 6 @(qrspec … H)
-    |#H @(\ 5a href="cic:/matita/tutorial/chapter2/Sub.con(0,1,2)"\ 6mk_Sub\ 5/a\ 6 … \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6\ 5a href="cic:/matita/basics/types/fst.def(1)"\ 6fst\ 5/a\ 6 … p,\ 5a href="cic:/matita/tutorial/chapter2/bool.con(0,1,0)"\ 6tt\ 5/a\ 6〉) whd #q #r #H1 destruct >\ 5a href="cic:/matita/tutorial/chapter2/add_S.def(2)"\ 6add_S\ 5/a\ 6 @\ 5a href="cic:/matita/basics/logic/eq_f.def(3)"\ 6eq_f\ 5/a\ 6 @(qrspec … H) 
+   cut (p \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6\ 5a href="cic:/matita/basics/types/fst.fix(0,2,1)"\ 6fst\ 5/a\ 6 … p, \ 5a href="cic:/matita/basics/types/snd.fix(0,2,1)"\ 6snd\ 5/a\ 6 … p〉) [//] 
+   cases (\ 5a href="cic:/matita/basics/types/snd.fix(0,2,1)"\ 6snd\ 5/a\ 6 … p)
+    [#H @(\ 5a href="cic:/matita/tutorial/chapter2/Sub.con(0,1,2)"\ 6mk_Sub\ 5/a\ 6 … \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6\ 5a href="cic:/matita/tutorial/chapter2/nat.con(0,2,0)"\ 6S\ 5/a\ 6 (\ 5a href="cic:/matita/basics/types/fst.fix(0,2,1)"\ 6fst\ 5/a\ 6 … p),\ 5a href="cic:/matita/tutorial/chapter2/bool.con(0,2,0)"\ 6ff\ 5/a\ 6〉) whd #q #r #H1 destruct @\ 5a href="cic:/matita/basics/logic/eq_f.def(3)"\ 6eq_f\ 5/a\ 6 \ 5span style="text-decoration: underline;"\ 6>\ 5/span\ 6\ 5a href="cic:/matita/tutorial/chapter2/add_S.def(2)"\ 6add_S\ 5/a\ 6
+     whd in ⊢ (???%); <\ 5a href="cic:/matita/tutorial/chapter2/add_S.def(2)"\ 6add_S\ 5/a\ 6 @(qrspec … H)
+    |#H @(\ 5a href="cic:/matita/tutorial/chapter2/Sub.con(0,1,2)"\ 6mk_Sub\ 5/a\ 6 … \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6\ 5a href="cic:/matita/basics/types/fst.fix(0,2,1)"\ 6fst\ 5/a\ 6 … p,\ 5a href="cic:/matita/tutorial/chapter2/bool.con(0,1,0)"\ 6tt\ 5/a\ 6〉) whd #q #r #H1 destruct >\ 5a href="cic:/matita/tutorial/chapter2/add_S.def(2)"\ 6add_S\ 5/a\ 6 @\ 5a href="cic:/matita/basics/logic/eq_f.def(3)"\ 6eq_f\ 5/a\ 6 @(qrspec … H) 
   ]
 qed.