X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;ds=inline;f=matita%2Fmatita%2Fcontribs%2Flambdadelta%2Fbasic_2%2Fmultiple%2Fcpys.ma;h=2ca575e2af32758a09fee8a4db30877422fa321b;hb=c60524dec7ace912c416a90d6b926bee8553250b;hp=eda8ee1e14a87513af7465b2aab1fad673e13c2b;hpb=f10cfe417b6b8ec1c7ac85c6ecf5fb1b3fdf37db;p=helm.git diff --git a/matita/matita/contribs/lambdadelta/basic_2/multiple/cpys.ma b/matita/matita/contribs/lambdadelta/basic_2/multiple/cpys.ma index eda8ee1e1..2ca575e2a 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/multiple/cpys.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/multiple/cpys.ma @@ -18,98 +18,98 @@ include "basic_2/substitution/cpy.ma". (* CONTEXT-SENSITIVE EXTENDED MULTIPLE SUBSTITUTION FOR TERMS ***************) definition cpys: ynat → ynat → relation4 genv lenv term term ≝ - λd,e,G. LTC … (cpy d e G). + λl,m,G. LTC … (cpy l m G). interpretation "context-sensitive extended multiple substritution (term)" - 'PSubstStar G L T1 d e T2 = (cpys d e G L T1 T2). + 'PSubstStar G L T1 l m T2 = (cpys l m G L T1 T2). (* Basic eliminators ********************************************************) -lemma cpys_ind: ∀G,L,T1,d,e. ∀R:predicate term. R T1 → - (∀T,T2. ⦃G, L⦄ ⊢ T1 ▶*[d, e] T → ⦃G, L⦄ ⊢ T ▶[d, e] T2 → R T → R T2) → - ∀T2. ⦃G, L⦄ ⊢ T1 ▶*[d, e] T2 → R T2. -#G #L #T1 #d #e #R #HT1 #IHT1 #T2 #HT12 +lemma cpys_ind: ∀G,L,T1,l,m. ∀R:predicate term. R T1 → + (∀T,T2. ⦃G, L⦄ ⊢ T1 ▶*[l, m] T → ⦃G, L⦄ ⊢ T ▶[l, m] T2 → R T → R T2) → + ∀T2. ⦃G, L⦄ ⊢ T1 ▶*[l, m] T2 → R T2. +#G #L #T1 #l #m #R #HT1 #IHT1 #T2 #HT12 @(TC_star_ind … HT1 IHT1 … HT12) // qed-. -lemma cpys_ind_dx: ∀G,L,T2,d,e. ∀R:predicate term. R T2 → - (∀T1,T. ⦃G, L⦄ ⊢ T1 ▶[d, e] T → ⦃G, L⦄ ⊢ T ▶*[d, e] T2 → R T → R T1) → - ∀T1. ⦃G, L⦄ ⊢ T1 ▶*[d, e] T2 → R T1. -#G #L #T2 #d #e #R #HT2 #IHT2 #T1 #HT12 +lemma cpys_ind_dx: ∀G,L,T2,l,m. ∀R:predicate term. R T2 → + (∀T1,T. ⦃G, L⦄ ⊢ T1 ▶[l, m] T → ⦃G, L⦄ ⊢ T ▶*[l, m] T2 → R T → R T1) → + ∀T1. ⦃G, L⦄ ⊢ T1 ▶*[l, m] T2 → R T1. +#G #L #T2 #l #m #R #HT2 #IHT2 #T1 #HT12 @(TC_star_ind_dx … HT2 IHT2 … HT12) // qed-. (* Basic properties *********************************************************) -lemma cpy_cpys: ∀G,L,T1,T2,d,e. ⦃G, L⦄ ⊢ T1 ▶[d, e] T2 → ⦃G, L⦄ ⊢ T1 ▶*[d, e] T2. +lemma cpy_cpys: ∀G,L,T1,T2,l,m. ⦃G, L⦄ ⊢ T1 ▶[l, m] T2 → ⦃G, L⦄ ⊢ T1 ▶*[l, m] T2. /2 width=1 by inj/ qed. -lemma cpys_strap1: ∀G,L,T1,T,T2,d,e. - ⦃G, L⦄ ⊢ T1 ▶*[d, e] T → ⦃G, L⦄ ⊢ T ▶[d, e] T2 → ⦃G, L⦄ ⊢ T1 ▶*[d, e] T2. +lemma cpys_strap1: ∀G,L,T1,T,T2,l,m. + ⦃G, L⦄ ⊢ T1 ▶*[l, m] T → ⦃G, L⦄ ⊢ T ▶[l, m] T2 → ⦃G, L⦄ ⊢ T1 ▶*[l, m] T2. normalize /2 width=3 by step/ qed-. -lemma cpys_strap2: ∀G,L,T1,T,T2,d,e. - ⦃G, L⦄ ⊢ T1 ▶[d, e] T → ⦃G, L⦄ ⊢ T ▶*[d, e] T2 → ⦃G, L⦄ ⊢ T1 ▶*[d, e] T2. +lemma cpys_strap2: ∀G,L,T1,T,T2,l,m. + ⦃G, L⦄ ⊢ T1 ▶[l, m] T → ⦃G, L⦄ ⊢ T ▶*[l, m] T2 → ⦃G, L⦄ ⊢ T1 ▶*[l, m] T2. normalize /2 width=3 by TC_strap/ qed-. -lemma lsuby_cpys_trans: ∀G,d,e. lsub_trans … (cpys d e G) (lsuby d e). +lemma lsuby_cpys_trans: ∀G,l,m. lsub_trans … (cpys l m G) (lsuby l m). /3 width=5 by lsuby_cpy_trans, LTC_lsub_trans/ qed-. -lemma cpys_refl: ∀G,L,d,e. reflexive … (cpys d e G L). +lemma cpys_refl: ∀G,L,l,m. reflexive … (cpys l m G L). /2 width=1 by cpy_cpys/ qed. -lemma cpys_bind: ∀G,L,V1,V2,d,e. ⦃G, L⦄ ⊢ V1 ▶*[d, e] V2 → - ∀I,T1,T2. ⦃G, L.ⓑ{I}V1⦄ ⊢ T1 ▶*[⫯d, e] T2 → - ∀a. ⦃G, L⦄ ⊢ ⓑ{a,I}V1.T1 ▶*[d, e] ⓑ{a,I}V2.T2. -#G #L #V1 #V2 #d #e #HV12 @(cpys_ind … HV12) -V2 +lemma cpys_bind: ∀G,L,V1,V2,l,m. ⦃G, L⦄ ⊢ V1 ▶*[l, m] V2 → + ∀I,T1,T2. ⦃G, L.ⓑ{I}V1⦄ ⊢ T1 ▶*[⫯l, m] T2 → + ∀a. ⦃G, L⦄ ⊢ ⓑ{a,I}V1.T1 ▶*[l, m] ⓑ{a,I}V2.T2. +#G #L #V1 #V2 #l #m #HV12 @(cpys_ind … HV12) -V2 [ #I #T1 #T2 #HT12 @(cpys_ind … HT12) -T2 /3 width=5 by cpys_strap1, cpy_bind/ | /3 width=5 by cpys_strap1, cpy_bind/ ] qed. -lemma cpys_flat: ∀G,L,V1,V2,d,e. ⦃G, L⦄ ⊢ V1 ▶*[d, e] V2 → - ∀T1,T2. ⦃G, L⦄ ⊢ T1 ▶*[d, e] T2 → - ∀I. ⦃G, L⦄ ⊢ ⓕ{I}V1.T1 ▶*[d, e] ⓕ{I}V2.T2. -#G #L #V1 #V2 #d #e #HV12 @(cpys_ind … HV12) -V2 +lemma cpys_flat: ∀G,L,V1,V2,l,m. ⦃G, L⦄ ⊢ V1 ▶*[l, m] V2 → + ∀T1,T2. ⦃G, L⦄ ⊢ T1 ▶*[l, m] T2 → + ∀I. ⦃G, L⦄ ⊢ ⓕ{I}V1.T1 ▶*[l, m] ⓕ{I}V2.T2. +#G #L #V1 #V2 #l #m #HV12 @(cpys_ind … HV12) -V2 [ #T1 #T2 #HT12 @(cpys_ind … HT12) -T2 /3 width=5 by cpys_strap1, cpy_flat/ | /3 width=5 by cpys_strap1, cpy_flat/ qed. -lemma cpys_weak: ∀G,L,T1,T2,d1,e1. ⦃G, L⦄ ⊢ T1 ▶*[d1, e1] T2 → - ∀d2,e2. d2 ≤ d1 → d1 + e1 ≤ d2 + e2 → - ⦃G, L⦄ ⊢ T1 ▶*[d2, e2] T2. -#G #L #T1 #T2 #d1 #e1 #H #d1 #d2 #Hd21 #Hde12 @(cpys_ind … H) -T2 +lemma cpys_weak: ∀G,L,T1,T2,l1,m1. ⦃G, L⦄ ⊢ T1 ▶*[l1, m1] T2 → + ∀l2,m2. l2 ≤ l1 → l1 + m1 ≤ l2 + m2 → + ⦃G, L⦄ ⊢ T1 ▶*[l2, m2] T2. +#G #L #T1 #T2 #l1 #m1 #H #l1 #l2 #Hl21 #Hlm12 @(cpys_ind … H) -T2 /3 width=7 by cpys_strap1, cpy_weak/ qed-. -lemma cpys_weak_top: ∀G,L,T1,T2,d,e. - ⦃G, L⦄ ⊢ T1 ▶*[d, e] T2 → ⦃G, L⦄ ⊢ T1 ▶*[d, |L| - d] T2. -#G #L #T1 #T2 #d #e #H @(cpys_ind … H) -T2 +lemma cpys_weak_top: ∀G,L,T1,T2,l,m. + ⦃G, L⦄ ⊢ T1 ▶*[l, m] T2 → ⦃G, L⦄ ⊢ T1 ▶*[l, |L| - l] T2. +#G #L #T1 #T2 #l #m #H @(cpys_ind … H) -T2 /3 width=4 by cpys_strap1, cpy_weak_top/ qed-. -lemma cpys_weak_full: ∀G,L,T1,T2,d,e. - ⦃G, L⦄ ⊢ T1 ▶*[d, e] T2 → ⦃G, L⦄ ⊢ T1 ▶*[0, |L|] T2. -#G #L #T1 #T2 #d #e #H @(cpys_ind … H) -T2 +lemma cpys_weak_full: ∀G,L,T1,T2,l,m. + ⦃G, L⦄ ⊢ T1 ▶*[l, m] T2 → ⦃G, L⦄ ⊢ T1 ▶*[0, |L|] T2. +#G #L #T1 #T2 #l #m #H @(cpys_ind … H) -T2 /3 width=5 by cpys_strap1, cpy_weak_full/ qed-. (* Basic forward lemmas *****************************************************) -lemma cpys_fwd_up: ∀G,L,U1,U2,dt,et. ⦃G, L⦄ ⊢ U1 ▶*[dt, et] U2 → - ∀T1,d,e. ⬆[d, e] T1 ≡ U1 → - d ≤ dt → d + e ≤ dt + et → - ∃∃T2. ⦃G, L⦄ ⊢ U1 ▶*[d+e, dt+et-(d+e)] U2 & ⬆[d, e] T2 ≡ U2. -#G #L #U1 #U2 #dt #et #H #T1 #d #e #HTU1 #Hddt #Hdedet @(cpys_ind … H) -U2 +lemma cpys_fwd_up: ∀G,L,U1,U2,lt,mt. ⦃G, L⦄ ⊢ U1 ▶*[lt, mt] U2 → + ∀T1,l,m. ⬆[l, m] T1 ≡ U1 → + l ≤ lt → l + m ≤ lt + mt → + ∃∃T2. ⦃G, L⦄ ⊢ U1 ▶*[l+m, lt+mt-(l+m)] U2 & ⬆[l, m] T2 ≡ U2. +#G #L #U1 #U2 #lt #mt #H #T1 #l #m #HTU1 #Hllt #Hlmlmt @(cpys_ind … H) -U2 [ /2 width=3 by ex2_intro/ | -HTU1 #U #U2 #_ #HU2 * #T #HU1 #HTU elim (cpy_fwd_up … HU2 … HTU) -HU2 -HTU /3 width=3 by cpys_strap1, ex2_intro/ ] qed-. -lemma cpys_fwd_tw: ∀G,L,T1,T2,d,e. ⦃G, L⦄ ⊢ T1 ▶*[d, e] T2 → ♯{T1} ≤ ♯{T2}. -#G #L #T1 #T2 #d #e #H @(cpys_ind … H) -T2 // +lemma cpys_fwd_tw: ∀G,L,T1,T2,l,m. ⦃G, L⦄ ⊢ T1 ▶*[l, m] T2 → ♯{T1} ≤ ♯{T2}. +#G #L #T1 #T2 #l #m #H @(cpys_ind … H) -T2 // #T #T2 #_ #HT2 #IHT1 lapply (cpy_fwd_tw … HT2) -HT2 /2 width=3 by transitive_le/ qed-. @@ -117,24 +117,24 @@ qed-. (* Basic inversion lemmas ***************************************************) (* Note: this can be derived from cpys_inv_atom1 *) -lemma cpys_inv_sort1: ∀G,L,T2,k,d,e. ⦃G, L⦄ ⊢ ⋆k ▶*[d, e] T2 → T2 = ⋆k. -#G #L #T2 #k #d #e #H @(cpys_ind … H) -T2 // +lemma cpys_inv_sort1: ∀G,L,T2,k,l,m. ⦃G, L⦄ ⊢ ⋆k ▶*[l, m] T2 → T2 = ⋆k. +#G #L #T2 #k #l #m #H @(cpys_ind … H) -T2 // #T #T2 #_ #HT2 #IHT1 destruct >(cpy_inv_sort1 … HT2) -HT2 // qed-. (* Note: this can be derived from cpys_inv_atom1 *) -lemma cpys_inv_gref1: ∀G,L,T2,p,d,e. ⦃G, L⦄ ⊢ §p ▶*[d, e] T2 → T2 = §p. -#G #L #T2 #p #d #e #H @(cpys_ind … H) -T2 // +lemma cpys_inv_gref1: ∀G,L,T2,p,l,m. ⦃G, L⦄ ⊢ §p ▶*[l, m] T2 → T2 = §p. +#G #L #T2 #p #l #m #H @(cpys_ind … H) -T2 // #T #T2 #_ #HT2 #IHT1 destruct >(cpy_inv_gref1 … HT2) -HT2 // qed-. -lemma cpys_inv_bind1: ∀a,I,G,L,V1,T1,U2,d,e. ⦃G, L⦄ ⊢ ⓑ{a,I}V1.T1 ▶*[d, e] U2 → - ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ▶*[d, e] V2 & - ⦃G, L.ⓑ{I}V1⦄ ⊢ T1 ▶*[⫯d, e] T2 & +lemma cpys_inv_bind1: ∀a,I,G,L,V1,T1,U2,l,m. ⦃G, L⦄ ⊢ ⓑ{a,I}V1.T1 ▶*[l, m] U2 → + ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ▶*[l, m] V2 & + ⦃G, L.ⓑ{I}V1⦄ ⊢ T1 ▶*[⫯l, m] T2 & U2 = ⓑ{a,I}V2.T2. -#a #I #G #L #V1 #T1 #U2 #d #e #H @(cpys_ind … H) -U2 +#a #I #G #L #V1 #T1 #U2 #l #m #H @(cpys_ind … H) -U2 [ /2 width=5 by ex3_2_intro/ | #U #U2 #_ #HU2 * #V #T #HV1 #HT1 #H destruct elim (cpy_inv_bind1 … HU2) -HU2 #V2 #T2 #HV2 #HT2 #H @@ -143,10 +143,10 @@ lemma cpys_inv_bind1: ∀a,I,G,L,V1,T1,U2,d,e. ⦃G, L⦄ ⊢ ⓑ{a,I}V1.T1 ▶* ] qed-. -lemma cpys_inv_flat1: ∀I,G,L,V1,T1,U2,d,e. ⦃G, L⦄ ⊢ ⓕ{I}V1.T1 ▶*[d, e] U2 → - ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ▶*[d, e] V2 & ⦃G, L⦄ ⊢ T1 ▶*[d, e] T2 & +lemma cpys_inv_flat1: ∀I,G,L,V1,T1,U2,l,m. ⦃G, L⦄ ⊢ ⓕ{I}V1.T1 ▶*[l, m] U2 → + ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ▶*[l, m] V2 & ⦃G, L⦄ ⊢ T1 ▶*[l, m] T2 & U2 = ⓕ{I}V2.T2. -#I #G #L #V1 #T1 #U2 #d #e #H @(cpys_ind … H) -U2 +#I #G #L #V1 #T1 #U2 #l #m #H @(cpys_ind … H) -U2 [ /2 width=5 by ex3_2_intro/ | #U #U2 #_ #HU2 * #V #T #HV1 #HT1 #H destruct elim (cpy_inv_flat1 … HU2) -HU2 @@ -154,13 +154,13 @@ lemma cpys_inv_flat1: ∀I,G,L,V1,T1,U2,d,e. ⦃G, L⦄ ⊢ ⓕ{I}V1.T1 ▶*[d, ] qed-. -lemma cpys_inv_refl_O2: ∀G,L,T1,T2,d. ⦃G, L⦄ ⊢ T1 ▶*[d, 0] T2 → T1 = T2. -#G #L #T1 #T2 #d #H @(cpys_ind … H) -T2 // +lemma cpys_inv_refl_O2: ∀G,L,T1,T2,l. ⦃G, L⦄ ⊢ T1 ▶*[l, 0] T2 → T1 = T2. +#G #L #T1 #T2 #l #H @(cpys_ind … H) -T2 // #T #T2 #_ #HT2 #IHT1 <(cpy_inv_refl_O2 … HT2) -HT2 // qed-. -lemma cpys_inv_lift1_eq: ∀G,L,U1,U2. ∀d,e:nat. - ⦃G, L⦄ ⊢ U1 ▶*[d, e] U2 → ∀T1. ⬆[d, e] T1 ≡ U1 → U1 = U2. -#G #L #U1 #U2 #d #e #H #T1 #HTU1 @(cpys_ind … H) -U2 +lemma cpys_inv_lift1_eq: ∀G,L,U1,U2. ∀l,m:nat. + ⦃G, L⦄ ⊢ U1 ▶*[l, m] U2 → ∀T1. ⬆[l, m] T1 ≡ U1 → U1 = U2. +#G #L #U1 #U2 #l #m #H #T1 #HTU1 @(cpys_ind … H) -U2 /2 width=7 by cpy_inv_lift1_eq/ qed-.