X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;ds=inline;f=matita%2Fmatita%2Flib%2Fturing%2Fmulti_universal%2FbinaryTM.ma;h=f2af60587cf9c6b292bec30210c8cefb5e5d9ea2;hb=d6b8021e8c83eb19033cad0aeaeebf95b327e78a;hp=34c9ae4b8f7e2ec38b95ccb55f2bf9043f3a5937;hpb=04b536f1693534e450fde5dc824022321d93d039;p=helm.git diff --git a/matita/matita/lib/turing/multi_universal/binaryTM.ma b/matita/matita/lib/turing/multi_universal/binaryTM.ma index 34c9ae4b8..f2af60587 100644 --- a/matita/matita/lib/turing/multi_universal/binaryTM.ma +++ b/matita/matita/lib/turing/multi_universal/binaryTM.ma @@ -39,7 +39,7 @@ definition bin5 : binary_base_states ≝ mk_Sig ?? 5 (leb_true_to_le 6 6 (refl definition states_binaryTM : FinSet → FinSet → FinSet ≝ λsig,states. FinProd (FinProd states binary_base_states) - (FinProd (FinOption sig) (initN (S (2 * (FS_crd sig))))). + (FinProd (FinOption sig) (initN (S (S (2 * (FS_crd sig)))))). axiom daemon : ∀T:Type[0].T. @@ -48,6 +48,16 @@ definition to_initN : ∀n,m.n < m → initN m ≝ λn,m,Hn.mk_Sig … n ….// definition initN_pred : ∀n.∀m:initN n.initN n ≝ λn,m.mk_Sig … (pred (pi1 … m)) …. cases m #m0 /2 by le_to_lt_to_lt/ qed. +definition displ_of_move ≝ λsig,mv. + match mv with + [ L ⇒ 2*FS_crd sig + | N ⇒ FS_crd sig + | R ⇒ O ]. + +lemma le_displ_of_move : ∀sig,mv.displ_of_move sig mv ≤ S (2*FS_crd sig). +#sig * /2 by le_S/ +qed. + (* controllare i contatori, molti andranno incrementati di uno *) definition trans_binaryTM : ∀sig,states:FinSet. (states × (option sig) → states × (option sig) × move) → @@ -56,19 +66,21 @@ definition trans_binaryTM : ∀sig,states:FinSet. ≝ λsig,states,trans,p. let 〈s,a〉 ≝ p in let 〈s0,phase,ch,count〉 ≝ s in - let (H1 : O < S (2*FS_crd sig)) ≝ ? in - let (H2 : FS_crd sig < S (2*FS_crd sig)) ≝ ? in + let (H1 : O < S (S (2*FS_crd sig))) ≝ ? in + let (H2 : FS_crd sig < S (S (2*FS_crd sig))) ≝ ? in match pi1 … phase with [ O ⇒ (*** PHASE 0: read ***) - match a with - [ Some a0 ⇒ - match pi1 … count with - [ O ⇒ 〈〈s0,bin1,ch,to_initN (FS_crd sig) ? H2〉,None ?,N〉 - | S k ⇒ if (a0 == true) - then 〈〈s0,bin0,FS_nth sig k,initN_pred … count〉, None ?,R〉 - else 〈〈s0,bin0,ch,initN_pred … count〉,None ?,R〉 ] - | None ⇒ (* Overflow position! *) - 〈〈s0,bin4,None ?,to_initN 0 ? H1〉,None ?,R〉 ] + match pi1 … count with + [ O ⇒ 〈〈s0,bin1,ch,to_initN (FS_crd sig) ? H2〉,None ?,N〉 + | S k ⇒ match a with + [ Some a0 ⇒ if (a0 == true) + then 〈〈s0,bin0,FS_nth sig k,initN_pred … count〉, None ?,R〉 + else 〈〈s0,bin0,ch,initN_pred … count〉,None ?,R〉 + | None ⇒ (* Overflow position! *) + let 〈s',a',mv〉 ≝ trans 〈s0,None ?〉 in + match a' with + [ None ⇒ (* we don't write anything: go to end of 2 *) 〈〈s0,bin2,None ?,to_initN 0 ? H1〉,None ?,N〉 + | Some _ ⇒ (* maybe extend tape *) 〈〈s0,bin4,None ?,to_initN O ? H1〉,None ?,R〉 ] ] ] | S phase ⇒ match phase with [ O ⇒ (*** PHASE 1: restart ***) match pi1 … count with @@ -78,9 +90,7 @@ definition trans_binaryTM : ∀sig,states:FinSet. [ O ⇒ (*** PHASE 2: write ***) let 〈s',a',mv〉 ≝ trans 〈s0,ch〉 in match pi1 … count with - [ O ⇒ let mv' ≝ match mv with [ R ⇒ N | _ ⇒ L ] in - let count' ≝ match mv with [ R ⇒ 0 | N ⇒ FS_crd sig | L ⇒ 2*(FS_crd sig) ] in - 〈〈s',bin3,ch,to_initN count' ??〉,None ?,mv'〉 + [ O ⇒ 〈〈s',bin3,ch,to_initN (displ_of_move sig mv) ??〉,None ?,N〉 | S k ⇒ match a' with [ None ⇒ 〈〈s0,bin2,ch,initN_pred … count〉,None ?,R〉 | Some a0' ⇒ let out ≝ (FS_nth ? k == a') in @@ -98,15 +108,14 @@ definition trans_binaryTM : ∀sig,states:FinSet. | Some _ ⇒ (* leftof *) let 〈s',a',mv〉 ≝ trans 〈s0,ch〉 in match a' with - [ None ⇒ (* we don't write anything: go to end of 2 *) 〈〈s0,bin2,ch,to_initN 0 ? H1〉,None ?,N〉 + [ None ⇒ (* (vacuous) go to end of 2 *) 〈〈s0,bin2,ch,to_initN 0 ? H1〉,None ?,N〉 | Some _ ⇒ (* extend tape *) 〈〈s0,bin5,ch,to_initN (FS_crd sig) ? H2〉,None ?,L〉 ] ] | S _ ⇒ (*** PHASE 5: left extension ***) match pi1 … count with - [ O ⇒ 〈〈s0,bin2,ch,to_initN (FS_crd sig) ? H2〉,None ?,N〉 + [ O ⇒ 〈〈s0,bin2,ch,to_initN (FS_crd sig) ? H2〉,None ?,R〉 | S k ⇒ 〈〈s0,bin5,ch,initN_pred … count〉,Some ? false,L〉 ]]]]]]. -[2,3: //] -whd in match count'; cases mv whd in ⊢ (?%?); // +[2,3: /2 by lt_S_to_lt/] /2 by le_S_S/ qed. definition halt_binaryTM : ∀sig,M.states_binaryTM sig (states sig M) → bool ≝ @@ -129,15 +138,21 @@ definition mk_binaryTM ≝ λsig.λM:TM sig. mk_TM FinBool (states_binaryTM sig (states sig M)) (trans_binaryTM sig (states sig M) (trans sig M)) - (〈start sig M,bin0,None ?,FS_crd sig〉) (halt_binaryTM sig M).// qed. + (〈start sig M,bin0,None ?,FS_crd sig〉) (halt_binaryTM sig M). +/2 by lt_S_to_lt/ qed. + +definition bin_char ≝ λsig,ch.unary_of_nat (FS_crd sig) (index_of_FS sig ch). -definition bin_current ≝ λsig,t.match current ? t with -[ None ⇒ [ ] | Some c ⇒ unary_of_nat (FS_crd sig) (index_of_FS sig c) ]. +definition opt_bin_char ≝ λsig,c.match c with +[ None ⇒ [ ] | Some c0 ⇒ bin_char sig c0 ]. + +definition bin_list ≝ λsig,l.flatten ? (map ?? (bin_char sig) l). +definition rev_bin_list ≝ λsig,l.flatten ? (map ?? (λc.reverse ? (bin_char sig c)) l). definition tape_bin_lift ≝ λsig,t. -let ls' ≝ flatten ? (map ?? (unary_of_nat (FS_crd sig) ∘ (index_of_FS sig)) (left ? t)) in -let c' ≝ option_hd ? (bin_current sig t) in -let rs' ≝ tail ? (bin_current sig t)@flatten ? (map ?? (unary_of_nat (FS_crd sig) ∘ (index_of_FS sig)) (right ? t)) in +let ls' ≝ rev_bin_list ? (left ? t) in +let c' ≝ option_hd ? (opt_bin_char sig (current ? t)) in +let rs' ≝ (tail ? (opt_bin_char sig (current ? t))@bin_list ? (right ? t)) in mk_tape ? ls' c' rs'. definition R_bin_lift ≝ λsig,R,t1,t2. @@ -146,17 +161,754 @@ definition R_bin_lift ≝ λsig,R,t1,t2. definition state_bin_lift : ∀sig.∀M:TM sig.states sig M → states ? (mk_binaryTM ? M) - ≝ λsig,M,q.〈q,bin0,None ?,FS_crd sig〉.// qed. + ≝ λsig,M,q.〈q,bin0,None ?,FS_crd sig〉./2 by lt_S_to_lt/ qed. + +lemma lift_halt_binaryTM : + ∀sig,M,q.halt sig M q = halt ? (mk_binaryTM sig M) (state_bin_lift ? M q). +// qed. + +lemma binaryTM_bin0_bin1 : + ∀sig,M,t,q,ch. + step ? (mk_binaryTM sig M) (mk_config ?? (〈q,bin0,ch,O〉) t) + = mk_config ?? (〈q,bin1,ch,to_initN (FS_crd sig) ??〉) t. // +qed. + +lemma binaryTM_bin0_bin2 : + ∀sig,M,t,q,ch,k,qn,mv. + current ? t = None ? → S k Hcur Hcur Hcur % +qed. + +lemma binaryTM_bin0_false : + ∀sig,M,t,q,ch,k. + current ? t = Some ? false → S k Hcur % +qed. + +(* to be checked *) +axiom binary_to_bin_char :∀sig,csl,csr,a. + csl@true::csr=bin_char sig a → FS_nth ? (length ? csr) = Some ? a. + +lemma binaryTM_phase0_midtape_aux : + ∀sig,M,q,ls,a,rs,k. + halt sig M q=false → + ∀csr,csl,t,ch.length ? csr < S (2*FS_crd sig) → + t = mk_tape ? (reverse ? csl@ls) (option_hd ? (csr@rs)) (tail ? (csr@rs)) → + csl@csr = bin_char sig a → + |csl@csr| = FS_crd sig → + (index_of_FS ? a < |csl| → ch = Some ? a) → + loopM ? (mk_binaryTM sig M) (S (length ? csr) + k) + (mk_config ?? (〈q,bin0,ch,length ? csr〉) t) + = loopM ? (mk_binaryTM sig M) k + (mk_config ?? (〈q,bin1,Some ? a,FS_crd sig〉) + (mk_tape ? (reverse ? (bin_char ? a)@ls) (option_hd ? rs) (tail ? rs))). [2,3:@le_S /2 by O/] +#sig #M #q #ls #a #rs #k #Hhalt #csr elim csr +[ #csl #t #ch #Hlen #Ht >append_nil #Hcsl #Hlencsl #Hch >loopM_unfold >loop_S_false [|normalize //] + >Hch [| >Hlencsl (* lemmatize *) @daemon] + binaryTM_bin0_bin1 @eq_f >Ht + whd in match (step ???); whd in match (trans ???); loopM_unfold >loop_S_false [|normalize //] + binaryTM_bin0_true + [| >Ht % ] + lapply (IH (csl@[true]) (tape_move FinBool t R) ??????) + [ // + | >associative_append @Hcrd + | >associative_append @Heq + | >Ht whd in match (option_hd ??) in ⊢ (??%?); whd in match (tail ??) in ⊢ (??%?); + cases csr0 + [ cases rs + [ normalize >rev_append_def >rev_append_def >reverse_append % + | #r1 #rs1 normalize >rev_append_def >rev_append_def >reverse_append % ] + | #c1 #csr1 normalize >rev_append_def >rev_append_def >reverse_append % ] + | /2 by lt_S_to_lt/ + |] + #H whd in match (plus ??); >H @eq_f @eq_f2 % + | #csr0 #IH #csl #t #ch #Hlen #Ht #Heq #Hcrd #Hch >loopM_unfold >loop_S_false [|normalize //] + binaryTM_bin0_false [| >Ht % ] + lapply (IH (csl@[false]) (tape_move FinBool t R) ??????) + [6: @ch + | (* by cases: if index < |csl|, then Hch, else False *) + @daemon + | >associative_append @Hcrd + | >associative_append @Heq + | >Ht whd in match (option_hd ??) in ⊢ (??%?); whd in match (tail ??) in ⊢ (??%?); + cases csr0 + [ cases rs + [ normalize >rev_append_def >rev_append_def >reverse_append % + | #r1 #rs1 normalize >rev_append_def >rev_append_def >reverse_append % ] + | #c1 #csr1 normalize >rev_append_def >rev_append_def >reverse_append % ] + | /2 by lt_S_to_lt/ + |] + #H whd in match (plus ??); >H @eq_f @eq_f2 % + ] +] +qed. + +lemma le_to_eq : ∀m,n.m ≤ n → ∃k. n = m + k. /3 by plus_minus, ex_intro/ +qed. + +lemma minus_tech : ∀a,b.a + b - a = b. // qed. + +lemma binaryTM_phase0_midtape : + ∀sig,M,t,q,ls,a,rs,ch,k. + halt sig M q=false → S (FS_crd sig) ≤ k → + t = mk_tape ? ls (option_hd ? (bin_char ? a)) (tail ? (bin_char sig a)@rs) → + loopM ? (mk_binaryTM sig M) k + (mk_config ?? (〈q,bin0,ch,FS_crd sig〉) t) + = loopM ? (mk_binaryTM sig M) (k - S (FS_crd sig)) + (mk_config ?? (〈q,bin1,Some ? a,FS_crd sig〉) + (mk_tape ? (reverse ? (bin_char ? a)@ls) (option_hd ? rs) (tail ? rs))). [|*:@le_S //] +#sig #M #t #q #ls #a #rs #ch #k #Hhalt #Hk #Ht +cases (le_to_eq … Hk) #k0 #Hk0 >Hk0 >minus_tech +cut (∃c,cl.bin_char sig a = c::cl) [@daemon] * #c * #cl #Ha >Ha +cut (FS_crd sig = |bin_char sig a|) [@daemon] #Hlen +@(trans_eq ?? (loopM ? (mk_binaryTM ? M) (S (|c::cl|) + k0) + (mk_config ?? 〈q,bin0,〈ch,|c::cl|〉〉 t))) +[ /2 by O/ | @eq_f2 // @eq_f2 // @eq_f Hlen % ] +>(binaryTM_phase0_midtape_aux ? M q ls a rs ? ? (c::cl) [ ] t ch) // +[| normalize #Hfalse @False_ind cases (not_le_Sn_O ?) /2/ +| Ha % +| >Ht >Ha % +| Hk0 >minus_tech +cases (le_to_eq … HOn) #n0 #Hn0 destruct (Hn0) +cases t +[ >loopM_unfold >loop_S_false [|@Hhalt] #Hcur #Htrans >binaryTM_bin0_bin2 // /2 by refl, transitive_lt/ +| #r0 #rs0 >loopM_unfold >loop_S_false [|@Hhalt] #Hcur #Htrans >binaryTM_bin0_bin2 // /2 by refl, transitive_lt/ +| #l0 #ls0 >loopM_unfold >loop_S_false [|@Hhalt] #Hcur #Htrans >binaryTM_bin0_bin2 // /2 by refl, transitive_lt/ +| #ls #cur #rs normalize in ⊢ (%→?); #H destruct (H) ] +qed. + +lemma binaryTM_phase0_None_Some : + ∀sig,M,t,q,ch,k,n,qn,chn,mv. + O < n → n < 2*FS_crd sig → O < k → + halt sig M q=false → + current ? t = None ? → + 〈qn,Some ? chn,mv〉 = trans sig M 〈q,None ?〉 → + loopM ? (mk_binaryTM sig M) k (mk_config ?? (〈q,bin0,ch,n〉) t) + = loopM ? (mk_binaryTM sig M) (k-1) + (mk_config ?? (〈q,bin4,None ?,to_initN O ??〉) (tape_move ? t R)). [2,3: /2 by transitive_lt/ ] +#sig #M #t #q #ch #k #n #qn #chn #mv #HOn #Hn #Hk #Hhalt +cases (le_to_eq … Hk) #k0 #Hk0 >Hk0 >minus_tech +cases (le_to_eq … HOn) #n0 #Hn0 destruct (Hn0) +cases t +[ >loopM_unfold >loop_S_false [|@Hhalt] #Hcur #Htrans >binaryTM_bin0_bin4 // /2 by refl, transitive_lt/ +| #r0 #rs0 >loopM_unfold >loop_S_false [|@Hhalt] #Hcur #Htrans >binaryTM_bin0_bin4 // /2 by refl, transitive_lt/ +| #l0 #ls0 >loopM_unfold >loop_S_false [|@Hhalt] #Hcur #Htrans >binaryTM_bin0_bin4 // /2 by refl, transitive_lt/ +| #ls #cur #rs normalize in ⊢ (%→?); #H destruct (H) ] +qed. + +lemma binaryTM_bin1_O : + ∀sig,M,t,q,ch. + step ? (mk_binaryTM sig M) (mk_config ?? (〈q,bin1,ch,O〉) t) + = mk_config ?? (〈q,bin2,ch,to_initN (FS_crd sig) ??〉) t. [2,3:/2 by lt_S_to_lt/] +#sig #M #t #q #ch % +qed. + +lemma binaryTM_bin1_S : + ∀sig,M,t,q,ch,k. S k loopM_unfold >loop_S_false [| % ] + >binaryTM_bin1_O cases cur in Hcur; + [ #H >(H (refl ??)) -H % + | #cur' #_ % ] + | #l0 #ls0 #IH * [ #cur #rs normalize in ⊢ (%→?); #H destruct (H) ] + #n #cur #rs normalize in ⊢ (%→?); #H destruct (H) #Hlt #Hcur + >loopM_unfold >loop_S_false [|%] >binaryTM_bin1_S + <(?:mk_tape ? (ls0@ls2) (Some ? l0) (option_cons ? cur rs) = + tape_move FinBool (mk_tape FinBool ((l0::ls0)@ls2) cur rs) L) + [| cases cur in Hcur; [ #H >(H ?) // | #cur' #_ % ] ] + >(?:loop (config FinBool (states FinBool (mk_binaryTM sig M))) (S (|ls0|)+k) + (step FinBool (mk_binaryTM sig M)) + (λc:config FinBool (states FinBool (mk_binaryTM sig M)) + .halt FinBool (mk_binaryTM sig M) + (cstate FinBool (states FinBool (mk_binaryTM sig M)) c)) + (mk_config FinBool (states FinBool (mk_binaryTM sig M)) + 〈q,bin1,ch,to_initN (|ls0|) ? + (le_S ?? (lt_S_to_lt (|ls0|) (S (2*FS_crd sig)) Hlt))〉 + (mk_tape FinBool (ls0@ls2) (Some FinBool l0) (option_cons FinBool cur rs))) + = loopM FinBool (mk_binaryTM sig M) k + (mk_config FinBool (states FinBool (mk_binaryTM sig M)) + 〈q,bin2,〈ch,FS_crd sig〉〉 + (mk_tape FinBool ls2 + (option_hd FinBool (reverse FinBool ls0@l0::option_cons FinBool cur rs)) + (tail FinBool (reverse FinBool ls0@l0::option_cons FinBool cur rs))))) + [| /2/ + | >(?: l0::option_cons ? cur rs = option_cons ? (Some ? l0) (option_cons ? cur rs)) [| % ] + @trans_eq [|| @(IH ??? (refl ??)) [ /2 by lt_S_to_lt/ | #H destruct (H) ] ] + % + ] + >reverse_cons >associative_append % + ] +| #Hcut #sig #M #q #ls1 #ls2 #cur #rs #ch #k #Hk #Hlen + cases (le_to_eq … Hk) #k0 #Hk0 >Hk0 >minus_tech @Hcut // ] +qed. + +lemma binaryTM_bin2_O : + ∀sig,M,t,q,qn,ch,chn,mv. + 〈qn,chn,mv〉 = trans sig M 〈q,ch〉 → + step ? (mk_binaryTM sig M) (mk_config ?? (〈q,bin2,ch,O〉) t) + = mk_config ?? (〈qn,bin3,ch,to_initN (displ_of_move sig mv) ??〉) t.[2,3:/2 by lt_S_to_lt,le_S_S/] +#sig #M #t #q #qn #ch #chn #mv #Htrans +whd in match (step ???); whd in match (trans ???); Hk0 >minus_tech +elim n +[ #t #Hle #Htrans >loopM_unfold >loop_S_false // + >(binaryTM_bin2_O … Htrans) // +| #n0 #IH #t #Hn0 #Htrans >loopM_unfold >loop_S_false // + >(binaryTM_bin2_S_None … Htrans) @(trans_eq ???? (IH …)) // +] +qed. + +lemma binaryTM_phase2_Some_of : ∀sig,M,q,ch,qn,chn,mv,ls,k. + S (FS_crd sig) ≤ k → 〈qn,Some ? chn,mv〉 = trans sig M 〈q,ch〉 → + loopM ? (mk_binaryTM sig M) k + (mk_config ?? (〈q,bin2,ch,FS_crd sig〉) (mk_tape ? ls (None ?) [ ])) + = loopM ? (mk_binaryTM sig M) (k - S (FS_crd sig)) + (mk_config ?? (〈qn,bin3,ch,displ_of_move sig mv〉) + (mk_tape ? (reverse ? (bin_char sig chn)@ls) (None ?) [ ])). [2,3:@le_S_S //] +cut (∀sig,M,q,ch,qn,chn,mv,ls,k,n. + S n ≤ k → 〈qn,Some ? chn,mv〉 = trans sig M 〈q,ch〉 → + ∀csl. n Hk0 >minus_tech + #Htrans elim n + [ #csl #Hcount #Hcrd * #fs #Hfs >loopM_unfold >loop_S_false // length_append >(?:|bin_char sig chn| = FS_crd sig) [|@daemon] + length_reverse #H1 cut (O = |f0::fs0|) [ /2/ ] + normalize #H1 destruct (H1) ] + #H destruct (H) >append_nil in Hfs; #Hfs + >Hfs >reverse_reverse >(binaryTM_bin2_O … Htrans) // + | #n0 #IH #csl #Hcount #Hcrd * #fs #Hfs + >loopM_unfold >loop_S_false // (?: step FinBool (mk_binaryTM sig M) + (mk_config FinBool (states FinBool (mk_binaryTM sig M)) 〈q,bin2,〈ch,S n0〉〉 + (mk_tape FinBool (csl@ls) (None FinBool) [])) + = mk_config ?? (〈q,bin2,ch,n0〉) + (tape_move ? (tape_write ? + (mk_tape ? (csl@ls) (None ?) [ ]) (Some ? (FS_nth ? n0 == Some ? chn))) R)) + [| /2 by lt_S_to_lt/ | @(binaryTM_bin2_S_Some … Htrans) ] + >(?: tape_move ? (tape_write ???) ? = + mk_tape ? (((FS_nth ? n0 == Some sig chn)::csl)@ls) (None ?) [ ]) + [| cases csl // cases ls // ] + cases fs in Hfs; + [ #Hfalse cut (|bin_char ? chn| = |csl|) [ >Hfalse >length_append >length_reverse // ] + -Hfalse >(?:|bin_char sig chn| = FS_crd sig) [|@daemon] + (?:|csl| = |csl|+ O) in ⊢ (???%→?); // + #Hfalse cut (S n0 = O) /2 by injective_plus_r/ #H destruct (H) + | #f0 #fs0 #Hbinchar + cut (bin_char ? chn = reverse ? csl@(FS_nth ? n0 == Some ? chn)::fs0) [@daemon] + -Hbinchar #Hbinchar >Hbinchar @(trans_eq ???? (IH …)) // + [ %{fs0} >reverse_cons >associative_append @Hbinchar + | whd in ⊢ (??%?); /2 by / ] + @eq_f @eq_f @eq_f3 // + ] + ] +| #Hcut #sig #M #q #ch #qn #chn #mv #ls #k #Hk #Htrans + @trans_eq + [3: @(trans_eq ???? (Hcut ??????? ls ? (FS_crd sig) ? Htrans …)) // + [3:@([ ]) | %{(bin_char ? chn)} % | % ] + || % ] +] +qed. + +lemma binaryTM_phase2_Some_ow : ∀sig,M,q,ch,qn,chn,mv,ls,k,cs,rs. + S (FS_crd sig) ≤ k → 〈qn,Some ? chn,mv〉 = trans sig M 〈q,ch〉 → + |cs| = FS_crd sig → + loopM ? (mk_binaryTM sig M) k + (mk_config ?? (〈q,bin2,ch,FS_crd sig〉) + (mk_tape ? ls (option_hd ? (cs@rs)) (tail ? (cs@rs)))) + = loopM ? (mk_binaryTM sig M) (k - S (FS_crd sig)) + (mk_config ?? (〈qn,bin3,ch,displ_of_move sig mv〉) + (mk_tape ? (reverse ? (bin_char sig chn)@ls) (option_hd ? rs) (tail ? rs))). [2,3:@le_S_S /2 by O/] +cut (∀sig,M,q,ch,qn,chn,mv,ls,rs,k,csr. + 〈qn,Some ? chn,mv〉 = trans sig M 〈q,ch〉 → + ∀csl.|csr|loopM_unfold >loop_S_false // normalize in match (length ? [ ]); + >(binaryTM_bin2_O … Htrans) length_append >(?:|bin_char sig chn| = FS_crd sig) [|@daemon] + length_reverse #H1 cut (O = |f0::fs0|) [ /2/ ] + normalize #H1 destruct (H1) + | #b0 #bs0 #IH #csl #Hcount #Hcrd * #fs #Hfs + >loopM_unfold >loop_S_false // >(binaryTM_bin2_S_Some … Htrans) + >(?: tape_move ? (tape_write ???) ? = + mk_tape ? (((FS_nth ? (|bs0|)==Some sig chn)::csl)@ls) + (option_hd ? (bs0@rs)) (tail ? (bs0@rs))) + in match (tape_move ? (tape_write ???) ?); + [| cases bs0 // cases rs // ] @IH + [ whd in Hcount:(?%?); /2 by lt_S_to_lt/ + | length_append >length_append normalize // + | cases fs in Hfs; + [ #Hfalse cut (|bin_char ? chn| = |csl|) [ >Hfalse >length_append >length_reverse // ] -Hfalse >(?:|bin_char sig chn| = FS_crd sig) [|@daemon] + length_append normalize >(?:|csl| = |csl|+ O) in ⊢ (???%→?); // + #Hfalse cut (S (|bs0|) = O) /2 by injective_plus_r/ #H destruct (H) + | #f0 #fs0 #Hbinchar + cut (bin_char ? chn = reverse ? csl@(FS_nth ? (|bs0|) == Some ? chn)::fs0) [@daemon] + -Hbinchar #Hbinchar >Hbinchar %{fs0} >reverse_cons >associative_append % + ] + ] + ] +| #Hcut #sig #M #q #ch #qn #chn #mv #ls #k #cs #rs #Hk #Htrans #Hcrd + cases (le_to_eq … Hk) #k0 #Hk0 >Hk0 >minus_tech @trans_eq + [3: @(trans_eq ???? (Hcut ??????? ls ?? cs Htrans [ ] …)) // + [ normalize % // | normalize @Hcrd | >Hcrd // ] + || @eq_f2 [ >Hcrd % | @eq_f2 // @eq_f cases Hcrd // ] ] ] +qed. + +lemma binaryTM_bin3_O : + ∀sig,M,t,q,ch. + step ? (mk_binaryTM sig M) (mk_config ?? (〈q,bin3,ch,O〉) t) + = mk_config ?? (〈q,bin0,None ?,to_initN (FS_crd sig) ??〉) t. [2,3:@le_S //] +#sig #M #t #q #ch % +qed. + +lemma binaryTM_bin3_S : + ∀sig,M,t,q,ch,k. S k ≤ S (2*FS_crd sig) → + step ? (mk_binaryTM sig M) (mk_config ?? (〈q,bin3,ch,S k〉) t) + = mk_config ?? (〈q,bin3,ch,to_initN k ??〉) (tape_move ? t L). [2,3: @le_S_S /2 by lt_to_le/] +#sig #M #t #q #ch #k #HSk % +qed. + +lemma binaryTM_phase3 :∀sig,M,q,ch,k,n. + S n ≤ k → n ≤ S (2*FS_crd sig) → + ∀t.loopM ? (mk_binaryTM sig M) k + (mk_config ?? (〈q,bin3,ch,n〉) t) + = loopM ? (mk_binaryTM sig M) (k - S n) + (mk_config ?? (〈q,bin0,None ?,FS_crd sig〉) + (iter ? (λt0.tape_move ? t0 L) n t)). [2,3: /2 by lt_S_to_lt, le_to_lt_to_lt/] +#sig #M #q #ch #k #n #Hk +cases (le_to_eq … Hk) #k0 #Hk0 >Hk0 >minus_tech elim n +[ #Hcrd #t >loopM_unfold >loop_S_false [| % ] >binaryTM_bin3_O // +| #n0 #IH #Hlt #t >loopM_unfold >loop_S_false [|%] >binaryTM_bin3_S [|//] + Hcur % +qed. + +lemma binaryTM_phase4_write : ∀sig,M,q,ch,k,t. + O < k → current ? t = None ? → + loopM ? (mk_binaryTM sig M) k + (mk_config ?? (〈q,bin4,ch,O〉) t) + = loopM ? (mk_binaryTM sig M) (k-1) + (mk_config ?? (〈q,bin2,ch,to_initN (FS_crd sig) ??〉) t). [2,3: @le_S //] +#sig #M #q #ch #k #t #Hk #Hcur +cases (le_to_eq … Hk) #k0 #Hk0 >Hk0 >minus_tech +>loopM_unfold >loop_S_false // binaryTM_bin4_None // +qed. + +(* we don't get here any more! * +lemma binaryTM_bin4_noextend : + ∀sig,M,t,q,ch,cur,qn,mv. + current ? t = Some ? cur → + 〈qn,None ?,mv〉 = trans sig M 〈q,ch〉 → + step ? (mk_binaryTM sig M) (mk_config ?? (〈q,bin4,ch,O〉) t) + = mk_config ?? (〈q,bin2,ch,to_initN O ??〉) t. [2,3://] +#sig #M #t #q #ch #cur #qn #mv #Hcur #Htrans +whd in ⊢ (??%?); >Hcur whd in ⊢ (??%?); +whd in match (trans FinBool ??); Hcur whd in ⊢ (??%?); +whd in match (trans FinBool ??); Hk0 >minus_tech +>loopM_unfold >loop_S_false // binaryTM_bin4_extend // +qed. + +lemma binaryTM_bin5_O : + ∀sig,M,t,q,ch. + step ? (mk_binaryTM sig M) (mk_config ?? (〈q,bin5,ch,O〉) t) + = mk_config ?? (〈q,bin2,ch,to_initN (FS_crd sig) ??〉) (tape_move ? t R). [2,3:@le_S //] +#sig #M #t #q #ch % +qed. + +lemma binaryTM_bin5_S : + ∀sig,M,t,q,ch,k. S k Hk0 >minus_tech +elim n +[ #rs #Hlt %{[]} % // cases rs // +| #n0 #IH #rs #Hn0 cases (IH (false::rs) ?) [|/2 by lt_S_to_lt/] + #bs * #Hbs -IH #IH + %{(bs@[false])} % [ length_append /2 by increasing_to_injective/ ] + >loopM_unfold >loop_S_false // >binaryTM_bin5_S + >associative_append normalize in match ([false]@?); loopM_unfold @eq_f @eq_f cases rs // +] +qed. + +lemma current_None_or_midtape : + ∀sig,t.current sig t = None sig ∨ ∃ls,c,rs.t = midtape sig ls c rs. +#sig * normalize /2/ #ls #c #rs %2 /4 by ex_intro/ +qed. + +lemma state_bin_lift_unfold : + ∀sig.∀M:TM sig.∀q:states sig M. + state_bin_lift sig M q = 〈q,bin0,None ?,FS_crd sig〉.// qed. + +axiom current_tape_bin_list : + ∀sig,t.current sig t = None ? → current ? (tape_bin_lift sig t) = None ?. + +lemma tape_bin_lift_unfold : + ∀sig,t. tape_bin_lift sig t = + mk_tape ? (rev_bin_list ? (left ? t)) (option_hd ? (opt_bin_char sig (current ? t))) + (tail ? (opt_bin_char sig (current ? t))@bin_list ? (right ? t)). // +qed. + +lemma reverse_bin_char_list : ∀sig,c,l. + reverse ? (bin_char sig c)@rev_bin_list ? l = rev_bin_list ? (c::l). // qed. + +lemma left_midtape : ∀sig,ls,c,rs.left ? (midtape sig ls c rs) = ls.// qed. +lemma current_midtape : ∀sig,ls,c,rs.current ? (midtape sig ls c rs) = Some ? c.// qed. +lemma right_midtape : ∀sig,ls,c,rs.right ? (midtape sig ls c rs) = rs.// qed. +lemma opt_bin_char_Some : ∀sig,c.opt_bin_char sig (Some ? c) = bin_char ? c.// qed. + +lemma opt_cons_hd_tl : ∀A,l.option_cons A (option_hd ? l) (tail ? l) = l. +#A * // qed. + +lemma le_tech : ∀a,b,c.a ≤ b → a * c ≤ b * c. +#a #b #c #H /2 by monotonic_le_times_r/ +qed. + +lemma iter_split : ∀T,f,m,n,x. + iter T f (m+n) x = iter T f m (iter T f n x). +#T #f #m #n elim n /2/ +#n0 #IH #x IH % +qed. + +lemma iter_tape_move_R : ∀T,n,ls,cs,rs.|cs| = n → + iter ? (λt0.tape_move T t0 R) n (mk_tape ? ls (option_hd ? (cs@rs)) (tail ? (cs@rs))) + = mk_tape ? (reverse ? cs@ls) (option_hd ? rs) (tail ? rs). +#T #n elim n +[ #ls * [| #c0 #cs0 #rs #H normalize in H; destruct (H) ] #rs #_ % +| #n0 #IH #ls * [ #rs #H normalize in H; destruct (H) ] #c #cs #rs #Hlen + whd in ⊢ (??%?); + >(?: (tape_move T (mk_tape T ls (option_hd T ((c::cs)@rs)) (tail T ((c::cs)@rs))) R) + = mk_tape ? (c::ls) (option_hd ? (cs@rs)) (tail ? (cs@rs))) in ⊢ (??(????%)?); + [| cases cs // cases rs // ] >IH + [ >reverse_cons >associative_append % + | normalize in Hlen; destruct (Hlen) % ] +] +qed. + +lemma tail_tech : ∀T,l1,l2.O < |l1| → tail T (l1@l2) = tail ? l1@l2. +#T * normalize // #l2 #Hfalse @False_ind cases (not_le_Sn_O O) /2/ +qed. + +lemma hd_tech : ∀T,l1,l2.O < |l1| → option_hd T (l1@l2) = option_hd ? l1. +#T * normalize // #l2 #Hfalse @False_ind cases (not_le_Sn_O O) /2/ +qed. + +lemma iter_tape_move_l_nil : ∀T,n,rs. + iter ? (λt0.tape_move T t0 L) n (mk_tape ? [ ] (None ?) rs) = + mk_tape ? [ ] (None ?) rs. +#T #n #rs elim n // #n0 #IH reverse_append whd in ⊢ (??%?); + >(?: tape_move T (mk_tape T ((reverse T [c]@reverse T cs)@ls) (option_hd T rs) (tail T rs)) L + = mk_tape ? (reverse T cs@ls) (option_hd ? (c::rs)) (tail ? (c::rs))) in ⊢ (??(????%)?); + [| cases rs // ] >IH + [ >associative_append % + | >length_append in Hlen; normalize // ] +] +qed. lemma binaryTM_loop : ∀sig,M,i,t,q,tf,qf. + O < FS_crd sig → loopM sig M i (mk_config ?? q t) = Some ? (mk_config ?? qf tf) → ∃k.loopM ? (mk_binaryTM sig M) k (mk_config ?? (state_bin_lift ? M q) (tape_bin_lift ? t)) = Some ? (mk_config ?? (state_bin_lift ? M qf) (tape_bin_lift ? tf)). #sig #M #i elim i -[ #t #q #qf #tf change with (None ?) in ⊢ (??%?→?); #H destruct (H) -| -i #i #IH #t #q #tf #qf +[ #t #q #qf #tf #Hcrd change with (None ?) in ⊢ (??%?→?); #H destruct (H) +| -i #i #IH #t #q #tf #qf #Hcrd >loopM_unfold + lapply (refl ? (halt sig M (cstate ?? (mk_config ?? q t)))) + cases (halt ?? q) in ⊢ (???%→?); #Hhalt + [ >(loop_S_true ??? (λc.halt ?? (cstate ?? c)) (mk_config ?? q t) Hhalt) + #H destruct (H) %{1} >loopM_unfold >loop_S_true // ] + (* interesting case: more than one step *) + >(loop_S_false ??? (λc.halt ?? (cstate ?? c)) (mk_config ?? q t) Hhalt) + (config_expand ?? (step ???)) #Hloop + lapply (IH … Hloop) [@Hcrd] -IH * #k0 #IH state_bin_lift_unfold cases (current_None_or_midtape ? t) + (* 0.1) current = None *) + [ (* #Hcur >state_bin_lift_unfold in ⊢ (??%?); + lapply (current_tape_bin_list … Hcur) #Hcur' + >binaryTM_phase0_None /2 by monotonic_lt_plus_l/ + >(?: FS_crd sig + k0 = S (FS_crd sig + k0 - 1)) [|@daemon] + >loopM_unfold >loop_S_false // lapply (refl ? t) cases t in ⊢ (???%→?); + [4: #ls #c #rs normalize in ⊢ (%→?); #H destruct (H) normalize in Hcur; destruct (Hcur) + | #Ht >Ht >binaryTM_bin4_None // Ht >tape_bin_lift_unfold + >left_midtape >current_midtape >right_midtape >opt_bin_char_Some + >(binaryTM_phase0_midtape … Hhalt ? (refl ??)) [| // ] + >(?: 7*S (FS_crd sig) + k0 - S (FS_crd sig) = 6*S (FS_crd sig) + k0) [|/2 by plus_minus/] + (*** PHASE 1 ***) + >binaryTM_phase1 + [| cases (bin_list ? rs) normalize // #r0 #rs0 #H destruct (H) + | >length_reverse @daemon + | // ] + >(?:6*S (FS_crd sig) + k0 - S (FS_crd sig) = 5*S (FS_crd sig) + k0) [|/2 by plus_minus/] + >reverse_reverse >opt_cons_hd_tl + cut (∃qn,chn,mv.〈qn,chn,mv〉 = trans ? M 〈q,Some ? c〉) + [ cases (trans ? M 〈q,Some ? c〉) * #qn #chn #mv /4 by ex_intro/ ] + * #qn * #chn * #mv cases chn -chn + [ (* no write! *) #Htrans >(binaryTM_phase2_None … Htrans) [2,3: //] + >iter_tape_move_R [|@daemon] + >(?:5*S (FS_crd sig) + k0 - S (FS_crd sig) = 4*S (FS_crd sig) + k0) [|/2 by plus_minus/] + >binaryTM_phase3 + [|//| cut (S (displ_of_move sig mv) ≤ 2*(S (FS_crd sig))) + [ /2 by le_S_S/ + | #H @(transitive_le ??? H) -H -Hcrd @(transitive_le ? (4*S (FS_crd sig))) /2 by le_plus_a/ ] + ] + cut (∀sig,M,m,n,cfg,cfg'.m < n → loopM sig M m cfg = Some ? cfg' → loopM sig M n cfg = Some ? cfg') [@daemon] + #Hcut <(Hcut ??? (4*S (FS_crd sig) + k0 - S (displ_of_move sig mv)) ??? IH) + [| cases mv + [ >(?:displ_of_move sig L = 2*FS_crd sig) // + >eq_minus_S_pred + @(transitive_le ? (pred (4*FS_crd sig+k0-2*FS_crd sig))) + [ >(?:4*FS_crd sig+k0-2*FS_crd sig = 2*FS_crd sig + k0) + [ cases Hcrd /2 by le_minus_to_plus, le_n/ + | (commutative_times 4) >(commutative_times 2) + eq_minus_S_pred (?:displ_of_move sig N = FS_crd sig) // + >eq_minus_S_pred + @(transitive_le ? (pred (4*FS_crd sig+k0-1*FS_crd sig))) + [ >(?:4*FS_crd sig+k0-1*FS_crd sig = 3*FS_crd sig + k0) + [ cases Hcrd /2 by le_minus_to_plus, le_n/ + | (commutative_times 4) >(commutative_times 1) + Ht whd in match (step ???); (?:displ_of_move ? L = FS_crd sig + FS_crd sig) [| normalize // ] + >iter_split >iter_tape_move_L [|@daemon] >Ht cases ls + [ normalize in match (rev_bin_list ??); + >hd_tech [|@daemon] >tail_tech [|@daemon] + >iter_tape_move_L_left // whd in match (step ???); + tape_bin_lift_unfold % + | #l0 #ls0 change with (reverse ? (bin_char ? l0)@rev_bin_list ? ls0) in match (rev_bin_list ??); + >iter_tape_move_L [|@daemon] + >hd_tech [|@daemon] >tail_tech [|@daemon] + whd in match (step ???); tape_bin_lift_unfold >left_midtape >current_midtape + >opt_bin_char_Some >right_midtape % + ] + | change with + (mk_tape ? (reverse ? (bin_char ? c)@rev_bin_list ? ls) + (option_hd ? (bin_list ? rs)) (tail ? (bin_list ? rs))) + in ⊢ (??%?); + >reverse_bin_char_list Ht >tape_bin_lift_unfold @eq_f3 + whd in match (step ???); current_midtape >opt_bin_char_Some + [ right_midtape iter_tape_move_L [|@daemon] + >Ht whd in match (step ???); tape_bin_lift_unfold >left_midtape >current_midtape >right_midtape + >opt_bin_char_Some lapply Hcrd >(?:FS_crd sig = |bin_char ? c|) [| @daemon ] + cases (bin_char ? c) // #H normalize in H; @False_ind + cases (not_le_Sn_O O) /2/ + ] + ] + + + (* @@ -165,4 +917,4 @@ theorem sem_binaryTM : ∀sig,M. #sig #M #t #i generalize in match t; -t @(nat_elim1 … i) #m #IH #intape #outc #Hloop -*) \ No newline at end of file +*) \ No newline at end of file