X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;ds=sidebyside;f=helm%2Fmatita%2Flibrary%2Fnat%2Fnth_prime.ma;h=84407538d2a89236188a3f5dab7e5f111f13338a;hb=5c6b8eec9db4119a87eb4fd4055f1ac31a713d90;hp=200ccba5a9086b0ca2a940c7f19ae0964bb8402c;hpb=ab44166935d77276c04fcce50aa8281292776e29;p=helm.git diff --git a/helm/matita/library/nat/nth_prime.ma b/helm/matita/library/nat/nth_prime.ma index 200ccba5a..84407538d 100644 --- a/helm/matita/library/nat/nth_prime.ma +++ b/helm/matita/library/nat/nth_prime.ma @@ -39,11 +39,11 @@ normalize.reflexivity. qed. *) theorem smallest_factor_fact: \forall n:nat. -n < smallest_factor (S (fact n)). +n < smallest_factor (S n!). intros. apply not_le_to_lt. -change with smallest_factor (S (fact n)) \le n \to False.intro. -apply not_divides_S_fact n (smallest_factor(S (fact n))). +change with smallest_factor (S n!) \le n \to False.intro. +apply not_divides_S_fact n (smallest_factor(S n!)). apply lt_SO_smallest_factor. simplify.apply le_S_S.apply le_SO_fact. assumption. @@ -52,19 +52,19 @@ simplify.apply le_S_S.apply le_O_n. qed. theorem ex_prime: \forall n. (S O) \le n \to \exists m. -n < m \land m \le (S (fact n)) \land (prime m). +n < m \land m \le S n! \land (prime m). intros. elim H. apply ex_intro nat ? (S(S O)). split.split.apply le_n (S(S O)). apply le_n (S(S O)).apply primeb_to_Prop (S(S O)). -apply ex_intro nat ? (smallest_factor (S (fact (S n1)))). +apply ex_intro nat ? (smallest_factor (S (S n1)!)). split.split. apply smallest_factor_fact. apply le_smallest_factor_n. (* Andrea: ancora hint non lo trova *) apply prime_smallest_factor_n. -change with (S(S O)) \le S (fact (S n1)). +change with (S(S O)) \le S (S n1)!. apply le_S.apply le_SSO_fact. simplify.apply le_S_S.assumption. qed. @@ -74,7 +74,7 @@ match n with [ O \Rightarrow (S(S O)) | (S p) \Rightarrow let previous_prime \def (nth_prime p) in - let upper_bound \def S (fact previous_prime) in + let upper_bound \def S previous_prime! in min_aux (upper_bound - (S previous_prime)) upper_bound primeb]. (* it works, but nth_prime 4 takes already a few minutes - @@ -100,24 +100,23 @@ apply primeb_to_Prop (S(S O)). intro. change with let previous_prime \def (nth_prime m) in -let upper_bound \def S (fact previous_prime) in +let upper_bound \def S previous_prime! in prime (min_aux (upper_bound - (S previous_prime)) upper_bound primeb). apply primeb_true_to_prime. apply f_min_aux_true. -apply ex_intro nat ? (smallest_factor (S (fact (nth_prime m)))). +apply ex_intro nat ? (smallest_factor (S (nth_prime m)!)). split.split. -cut S (fact (nth_prime m))-(S (fact (nth_prime m)) - (S (nth_prime m))) = (S (nth_prime m)). +cut S (nth_prime m)!-(S (nth_prime m)! - (S (nth_prime m))) = (S (nth_prime m)). rewrite > Hcut.exact smallest_factor_fact (nth_prime m). (* maybe we could factorize this proof *) apply plus_to_minus. -apply le_minus_m. apply plus_minus_m_m. apply le_S_S. apply le_n_fact_n. apply le_smallest_factor_n. apply prime_to_primeb_true. apply prime_smallest_factor_n. -change with (S(S O)) \le S (fact (nth_prime m)). +change with (S(S O)) \le S (nth_prime m)!. apply le_S_S.apply le_SO_fact. qed. @@ -127,14 +126,13 @@ change with \forall n:nat. (nth_prime n) < (nth_prime (S n)). intros. change with let previous_prime \def (nth_prime n) in -let upper_bound \def S (fact previous_prime) in +let upper_bound \def S previous_prime! in (S previous_prime) \le min_aux (upper_bound - (S previous_prime)) upper_bound primeb. intros. cut upper_bound - (upper_bound -(S previous_prime)) = (S previous_prime). rewrite < Hcut in \vdash (? % ?). apply le_min_aux. apply plus_to_minus. -apply le_minus_m. apply plus_minus_m_m. apply le_S_S. apply le_n_fact_n. @@ -168,16 +166,15 @@ exact lt_nth_prime_n_nth_prime_Sn.assumption. qed. theorem lt_nth_prime_to_not_prime: \forall n,m. nth_prime n < m \to m < nth_prime (S n) -\to \not (prime m). +\to \lnot (prime m). intros. apply primeb_false_to_not_prime. letin previous_prime \def nth_prime n. -letin upper_bound \def S (fact previous_prime). +letin upper_bound \def S previous_prime!. apply lt_min_aux_to_false primeb upper_bound (upper_bound - (S previous_prime)) m. -cut S (fact (nth_prime n))-(S (fact (nth_prime n)) - (S (nth_prime n))) = (S (nth_prime n)). +cut S (nth_prime n)!-(S (nth_prime n)! - (S (nth_prime n))) = (S (nth_prime n)). rewrite > Hcut.assumption. apply plus_to_minus. -apply le_minus_m. apply plus_minus_m_m. apply le_S_S. apply le_n_fact_n.