X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;ds=sidebyside;f=helm%2Fsoftware%2Fcomponents%2Fcic%2FcicUtil.ml;h=8fa9828590a604242c234bb25cf39cff3de17ce3;hb=3d16e43756f5e7c7e551e93e003a15c90627b77b;hp=d26d422d526318b3efedb7786ea0e7e2bc90ca62;hpb=111df95ac03f2ee21dfa2422a7f531f675b1c16d;p=helm.git diff --git a/helm/software/components/cic/cicUtil.ml b/helm/software/components/cic/cicUtil.ml index d26d422d5..8fa982859 100644 --- a/helm/software/components/cic/cicUtil.ml +++ b/helm/software/components/cic/cicUtil.ml @@ -25,7 +25,8 @@ (* $Id$ *) -module C = Cic +module C = Cic +module UM = UriManager exception Meta_not_found of int exception Subst_not_found of int @@ -79,7 +80,8 @@ let is_closed = | C.Cast (te,ty) -> is_closed k te && is_closed k ty | C.Prod (name,so,dest) -> is_closed k so && is_closed (k+1) dest | C.Lambda (_,so,dest) -> is_closed k so && is_closed (k+1) dest - | C.LetIn (_,so,dest) -> is_closed k so && is_closed (k+1) dest + | C.LetIn (_,so,ty,dest) -> + is_closed k so && is_closed k ty && is_closed (k+1) dest | C.Appl l -> List.fold_right (fun x i -> i && is_closed k x) l true | C.Var (_,exp_named_subst) @@ -116,7 +118,10 @@ let rec is_meta_closed = | C.Cast (te,ty) -> is_meta_closed te && is_meta_closed ty | C.Prod (name,so,dest) -> is_meta_closed so && is_meta_closed dest | C.Lambda (_,so,dest) -> is_meta_closed so && is_meta_closed dest - | C.LetIn (_,so,dest) -> is_meta_closed so && is_meta_closed dest + | C.LetIn (_,so,ty,dest) -> + is_meta_closed so && + is_meta_closed ty && + is_meta_closed dest | C.Appl l -> not (List.exists (fun x -> not (is_meta_closed x)) l) | C.Var (_,exp_named_subst) @@ -211,16 +216,6 @@ let attributes_of_obj = function let is_generated obj = List.exists ((=) `Generated) (attributes_of_obj obj) -let arity_of_composed_coercion obj = - let attrs = attributes_of_obj obj in - try - let tag=List.find (function `Class (`Coercion _) -> true|_->false) attrs in - match tag with - | `Class (`Coercion n) -> n - | _-> assert false - with Not_found -> 0 -;; - let projections_of_record obj uri = let attrs = attributes_of_obj obj in try @@ -250,7 +245,7 @@ let id_of_annterm = | C.ACast (id,_,_) | C.AProd (id,_,_,_) | C.ALambda (id,_,_,_) - | C.ALetIn (id,_,_,_) + | C.ALetIn (id,_,_,_,_) | C.AAppl (id,_) | C.AConst (id,_,_) | C.AMutInd (id,_,_,_) @@ -290,7 +285,8 @@ let rec rehash_term = | C.Cast (te,ty) -> C.Cast (rehash_term te, rehash_term ty) | C.Prod (n,s,t) -> C.Prod (n, rehash_term s, rehash_term t) | C.Lambda (n,s,t) -> C.Lambda (n, rehash_term s, rehash_term t) - | C.LetIn (n,s,t) -> C.LetIn (n, rehash_term s, rehash_term t) + | C.LetIn (n,s,ty,t) -> + C.LetIn (n, rehash_term s, rehash_term ty, rehash_term t) | C.Appl l -> C.Appl (List.map rehash_term l) | C.Const (uri,exp_named_subst) -> let uri' = recons uri in @@ -355,12 +351,7 @@ let rehash_obj = | Some (name,C.Decl t) -> Some (name,C.Decl (rehash_term t)) | Some (name,C.Def (bo,ty)) -> - let ty' = - match ty with - None -> None - | Some ty'' -> Some (rehash_term ty'') - in - Some (name,C.Def (rehash_term bo, ty'))) hyps, + Some (name,C.Def (rehash_term bo, rehash_term ty))) hyps, rehash_term ty)) conjs in @@ -400,8 +391,9 @@ let rec metas_of_term = function List.flatten (List.map (fun (u, t) -> metas_of_term t) ens) | C.Cast (s, t) | C.Prod (_, s, t) - | C.Lambda (_, s, t) - | C.LetIn (_, s, t) -> (metas_of_term s) @ (metas_of_term t) + | C.Lambda (_, s, t) -> (metas_of_term s) @ (metas_of_term t) + | C.LetIn (_, s, ty, t) -> + (metas_of_term s) @ (metas_of_term ty) @ (metas_of_term t) | C.Appl l -> List.flatten (List.map metas_of_term l) | C.MutCase (uri, i, s, t, l) -> (metas_of_term s) @ (metas_of_term t) @ @@ -435,8 +427,10 @@ let rec metas_of_term_set = function S.empty ens | C.Cast (s, t) | C.Prod (_, s, t) - | C.Lambda (_, s, t) - | C.LetIn (_, s, t) -> S.union (metas_of_term_set s) (metas_of_term_set t) + | C.Lambda (_, s, t) -> S.union (metas_of_term_set s) (metas_of_term_set t) + | C.LetIn (_, s, ty, t) -> + S.union (metas_of_term_set s) + (S.union (metas_of_term_set ty) (metas_of_term_set t)) | C.Appl l -> List.fold_left (fun s t -> S.union s (metas_of_term_set t)) @@ -482,9 +476,9 @@ let alpha_equivalence = aux s s' && aux t t' | C.Lambda (_,s,t), C.Lambda (_,s',t') -> aux s s' && aux t t' - | C.LetIn (_,s,t), C.LetIn(_,s',t') -> - aux s s' && aux t t' - | C.Appl l, C.Appl l' -> + | C.LetIn (_,s,ty,t), C.LetIn(_,s',ty',t') -> + aux s s' && aux ty ty' && aux t t' + | C.Appl l, C.Appl l' when List.length l = List.length l' -> (try List.fold_left2 (fun b t1 t2 -> b && aux t1 t2) true l l' @@ -535,7 +529,8 @@ let alpha_equivalence = | _ -> b ) true subst subst' with - Invalid_argument _ -> false) + Invalid_argument _ -> false) + | C.Appl [t], t' | t, C.Appl [t'] -> assert false (* FG: are we _really_ sure of these? | C.Sort (C.Type u), C.Sort (C.Type u') -> u = u' | C.Implicit a, C.Implicit a' -> a = a' @@ -552,3 +547,183 @@ let alpha_equivalence = Invalid_argument _ -> false in aux + +let is_sober c t = + let rec sober_term c g = function + | C.Rel _ + | C.Sort _ + | C.Implicit _ -> g + | C.Const (_, xnss) + | C.Var (_, xnss) + | C.MutConstruct (_, _, _, xnss) + | C.MutInd (_, _, xnss) -> sober_xnss c g xnss + | C.Meta (_, xss) -> sober_xss c g xss + | C.Lambda (_, v, t) + | C.Prod (_, v, t) + | C.Cast (t, v) -> + sober_term c (sober_term c g t) v + | C.LetIn (_, v, ty, t) -> + sober_term c (sober_term c (sober_term c g t) ty) v + | C.Appl [] + | C.Appl [_] -> fun b -> false + | C.Appl ts -> sober_terms c g ts + | C.MutCase (_, _, t, v, ts) -> + sober_terms c (sober_term c (sober_term c g t) v) ts + | C.Fix (_, ifs) -> sober_ifs c g ifs + | C.CoFix (_, cifs) -> sober_cifs c g cifs + and sober_terms c g = List.fold_left (sober_term c) g + and sober_xnss c g = + let map g (_, t) = sober_term c g t in + List.fold_left map g + and sober_xss c g = + let map g = function + | None -> g + | Some t -> sober_term c g t + in + List.fold_left map g + and sober_ifs c g = + let map g (_, _, t, v) = sober_term c (sober_term c g t) v in + List.fold_left map g + and sober_cifs c g = + let map g (_, t, v) = sober_term c (sober_term c g t) v in + List.fold_left map g + in + sober_term c (fun b -> b) t true + +(* raw cic prettyprinter ****************************************************) + +let xiter out so ss sc map l = + let rec aux = function + | hd :: tl when tl <> [] -> map hd; out ss; aux tl + | hd :: tl -> map hd; aux tl + | [] -> () + in + out so; aux l; out sc + +let abst s w = Some (s, C.Decl w) + +let abbr s v w = Some (s, C.Def (v, w)) + +let pp_sort out = function + | C.Type _ -> out "*Type" + | C.Prop -> out "*Prop" + | C.CProp _ -> out "*CProp" + | C.Set -> out "*Set" + +let pp_name out = function + | C.Name s -> out s + | C.Anonymous -> out "_" + +let pp_rel out c i = + try match List.nth c (pred i) with + | None -> out (Printf.sprintf "%u[?]" i) + | Some (s, _) -> out (Printf.sprintf "%u[" i); pp_name out s; out "]" + with Failure "nth" -> out (Printf.sprintf "%u[%i]" i (List.length c - i)) + +let pp_implict out = function + | None -> out "?" + | Some `Closed -> out "?[Closed]" + | Some `Type -> out "?[Type]" + | Some `Hole -> out "?[Hole]" + +let pp_uri out a = + out (Printf.sprintf "%s<%s>" (UM.name_of_uri a) (UM.string_of_uri a)) + +let rec pp_term out e c = function + | C.Sort h -> pp_sort out h + | C.Rel i -> pp_rel out c i + | C.Implicit x -> pp_implict out x + | C.Meta (i, iss) -> + let map = function None -> out "_" | Some v -> pp_term out e c v in + out (Printf.sprintf "?%u" i); xiter out "[" "; " "]" map iss + | C.Var (a, xss) -> + pp_uri out a; pp_xss out e c xss + | C.Const (a, xss) -> + pp_uri out a; pp_xss out e c xss + | C.MutInd (a, m, xss) -> + pp_uri out a; out (Printf.sprintf "/%u" m); + pp_xss out e c xss + | C.MutConstruct (a, m, n, xss) -> + pp_uri out a; out (Printf.sprintf "/%u/%u" m n); + pp_xss out e c xss + | C.Cast (v, w) -> + out "type "; pp_term out e c w; out " contains "; pp_term out e c v + | C.Appl vs -> + xiter out "(" " @ " ")" (pp_term out e c) vs + | C.MutCase (a, m, w, v, vs) -> + out "match "; pp_term out e c v; + out " of "; pp_uri out a; out (Printf.sprintf "/%u" m); + out " to "; pp_term out e c w; + xiter out " cases " " | " "" (pp_term out e c) vs + | C.Prod (s, w, t) -> + out "forall "; pp_name out s; out " of "; pp_term out e c w; + out " in "; pp_term out e (abst s w :: c) t + | C.Lambda (s, w, t) -> + out "fun "; pp_name out s; out " of "; pp_term out e c w; + out " in "; pp_term out e (abst s w :: c) t + | C.LetIn (s, v, w, t) -> + out "let "; pp_name out s; + out " def "; pp_term out e c v; out " of "; pp_term out e c w; + out " in "; pp_term out e (abbr s v w :: c) t + | C.Fix (i, fs) -> + let map c (s, _, w, v) = abbr (C.Name s) v w :: c in + let c' = List.fold_left map c fs in + let map (s, i, w, v) = + out (Printf.sprintf "%s[%u] def " s i); pp_term out e c' v; + out " of "; pp_term out e c w; + in + xiter out "let rec " " and " " in " map fs; pp_rel out c' (succ i) + | C.CoFix (i, fs) -> + let map c (s, w, v) = abbr (C.Name s) v w :: c in + let c' = List.fold_left map c fs in + let map (s, w, v) = + out s; pp_term out e c' v; + out " of "; pp_term out e c w; + in + xiter out "let corec " " and " " in " map fs; pp_rel out c' (succ i) + +and pp_xss out e c xss = + let map (a, v) = pp_uri out a; out " <- "; pp_term out e c v in + xiter out "[" "; " "]" map xss + +let pp_int out i = + out (Printf.sprintf "%u" i) + +let pp_attrs out attrs = + let map = function + | _ -> () + in + xiter out "[" "; " "] " map attrs + +let pp_pars out pars = + xiter out " (" ", " ")\n" (pp_uri out) pars + +let pp_point out point = + if point then out "ind " else out "coind " + +let pp_constructor out (s, w) = + out s; out " of "; pp_term out [] [] w + +let pp_definition out (s, point, w, ts) = + out "let "; pp_point out point; out s; out " of "; pp_term out [] [] w; + xiter out "\ndef " "\nor " "" (pp_constructor out) ts + +let pp_obj out = function + | C.Constant (s, None, u, pars, attrs) -> + out "fun "; pp_attrs out attrs; out s; pp_pars out pars; + out " of "; pp_term out [] [] u + | C.Constant (s, Some t, u, pars, attrs) -> + out "let "; pp_attrs out attrs; out s; pp_pars out pars; + out " def "; pp_term out [] [] t; out " of "; pp_term out [] [] u + | C.Variable (s, None, u, pars, attrs) -> + out "local fun "; pp_attrs out attrs; out s; pp_pars out pars; + out " of "; pp_term out [] [] u + | C.Variable (s, Some t, u, pars, attrs) -> + out "local let "; pp_attrs out attrs; out s; pp_pars out pars; + out " def "; pp_term out [] [] t; out " of "; pp_term out [] [] u + | C.InductiveDefinition (us, pars, lpsno, attrs) -> + out "Inductive "; pp_attrs out attrs; pp_int out lpsno; pp_pars out pars; + xiter out "" "\n" "" (pp_definition out) us + | C.CurrentProof (s, e, t, u, pars, attrs) -> + out "Current Proof" +