X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;ds=sidebyside;f=helm%2Fsoftware%2Fmatita%2Fcontribs%2Fdama%2Fdama%2Fmodels%2Fq_bars.ma;h=1d2107b7c934722dc281345fb033a0d226f0059e;hb=fe7b82f0aaed4ecbf84f70ec6fb7dce3c7da04e9;hp=c67bb501e8ab6e7d170311dee42f30ee434f630b;hpb=23dbce6cd7d599c10eb7801e91bc8b5164164418;p=helm.git diff --git a/helm/software/matita/contribs/dama/dama/models/q_bars.ma b/helm/software/matita/contribs/dama/dama/models/q_bars.ma index c67bb501e..1d2107b7c 100644 --- a/helm/software/matita/contribs/dama/dama/models/q_bars.ma +++ b/helm/software/matita/contribs/dama/dama/models/q_bars.ma @@ -14,243 +14,188 @@ include "nat_ordered_set.ma". include "models/q_support.ma". -include "models/list_support.ma". -include "cprop_connectives.ma". +include "models/list_support.ma". +include "logic/cprop_connectives.ma". -definition bar ≝ ratio × ℚ. (* base (Qpos) , height *) -record q_f : Type ≝ { start : ℚ; bars: list bar }. +definition bar ≝ ℚ × (ℚ × ℚ). notation < "\rationals \sup 2" non associative with precedence 90 for @{'q2}. interpretation "Q x Q" 'q2 = (Prod Q Q). -definition empty_bar : bar ≝ 〈one,OQ〉. +definition empty_bar : bar ≝ 〈Qpos one,〈OQ,OQ〉〉. notation "\rect" with precedence 90 for @{'empty_bar}. interpretation "q0" 'empty_bar = empty_bar. notation < "\ldots\rect\square\EmptySmallSquare\ldots" with precedence 90 for @{'lq2}. -interpretation "lq2" 'lq2 = (list bar). +interpretation "lq2" 'lq2 = (list bar). -let rec sum_bases (l:list bar) (i:nat) on i ≝ - match i with - [ O ⇒ OQ - | S m ⇒ - match l with - [ nil ⇒ sum_bases [] m + Qpos one - | cons x tl ⇒ sum_bases tl m + Qpos (\fst x)]]. - -axiom sum_bases_empty_nat_of_q_ge_OQ: - ∀q:ℚ.OQ ≤ sum_bases [] (nat_of_q q). -axiom sum_bases_empty_nat_of_q_le_q: - ∀q:ℚ.sum_bases [] (nat_of_q q) ≤ q. -axiom sum_bases_empty_nat_of_q_le_q_one: - ∀q:ℚ.q < sum_bases [] (nat_of_q q) + Qpos one. +definition q2_lt := mk_rel bar (λx,y:bar.\fst x < \fst y). -lemma sum_bases_ge_OQ: - ∀l,n. OQ ≤ sum_bases l n. -intro; elim l; simplify; intros; -[1: elim n; [apply q_eq_to_le;reflexivity] simplify; - apply q_le_plus_trans; try assumption; apply q_lt_to_le; apply q_pos_lt_OQ; -|2: cases n; [apply q_eq_to_le;reflexivity] simplify; - apply q_le_plus_trans; [apply H| apply q_lt_to_le; apply q_pos_lt_OQ;]] -qed. +interpretation "bar lt" 'lt x y = (rel_op _ q2_lt x y). -alias symbol "leq" = "Q less or equal than". -lemma sum_bases_O: - ∀l.∀x.sum_bases l x ≤ OQ → x = O. -intros; cases x in H; [intros; reflexivity] intro; cases (?:False); -cases (q_le_cases ?? H); -[1: apply (q_lt_corefl OQ); rewrite < H1 in ⊢ (?? %); -|2: apply (q_lt_antisym ??? H1);] clear H H1; cases l; -simplify; apply q_lt_plus_trans; -try apply q_pos_lt_OQ; -try apply (sum_bases_ge_OQ []); -apply (sum_bases_ge_OQ l1); -qed. +lemma q2_trans : ∀a,b,c:bar. a < b → b < c → a < c. +intros 3; cases a; cases b; cases c; unfold q2_lt; simplify; intros; +apply (q_lt_trans ??? H H1); +qed. +definition q2_trel := mk_trans_rel bar q2_lt q2_trans. -lemma sum_bases_increasing: - ∀l.∀n1,n2:nat.n1 H; apply q_eq_to_le; - rewrite > q_d_x_x; reflexivity; - |1: exists [apply p] simplify; constructor 4; rewrite > H1; split; - try split; try rewrite > q_d_x_x; try autobatch depth=2; - [1: rewrite > H; rewrite > q_plus_sym; apply q_lt_plus; - rewrite > q_plus_minus; apply q_lt_plus_trans; [apply sum_bases_ge_OQ] - apply q_pos_lt_OQ; - |2: rewrite > H; rewrite > q_d_x_x; apply q_eq_to_le; reflexivity; - |3: rewrite > H; rewrite > q_d_x_x; apply q_lt_plus_trans; - try apply sum_bases_ge_OQ; apply q_pos_lt_OQ;]] - |3: cases (q_cmp i (start f+sum_bases (bars f) (len (bars f)))); - [1: exists [apply 〈O,OQ〉] simplify; constructor 2; split; try assumption; - try reflexivity; rewrite > H1; apply q_eq_to_le; reflexivity; - |3: exists [apply 〈O,OQ〉] simplify; constructor 2; split; try assumption; - try reflexivity; apply q_lt_to_le; assumption; - |2: generalize in match (refl_eq ? (bars f): bars f = bars f); - generalize in match (bars f) in ⊢ (??? % → %); intro X; cases X; clear X; - intros; - [1: exists [apply 〈O,OQ〉] simplify; constructor 3; split; reflexivity; - |2: cases (value ⅆ[i,start f] (b::l)) (p Hp); - cases (Hp (q_dist_ge_OQ ? ?)); clear Hp value; [cases H3;destruct H4] - cases H3; clear H3; - exists [apply p]; constructor 4; split; try split; try assumption; - [1: intro X; destruct X; - |2: apply q_lt_to_le; assumption; - |3: rewrite < H2; assumption; - |4: cases (cmp_nat (\fst p) (len (bars f))); - [1:apply lt_to_le;rewrite H3;rewrite < H2;apply le_n] - cases (?:False); cases (\fst p) in H3 H4 H6; clear H5; - [1: intros; apply (not_le_Sn_O ? H5); - |2: rewrite > q_d_sym; rewrite > q_d_noabs; [2: apply q_lt_to_le; assumption] - intros; lapply (q_lt_inj_plus_r ?? (Qopp (start f)) H1); clear H1; - generalize in match Hletin; - rewrite > (q_plus_sym (start f)); rewrite < q_plus_assoc; - do 2 rewrite < q_elim_minus; rewrite > q_plus_minus; - rewrite > q_plus_OQ; intro K; apply (q_lt_corefl (i-start f)); - apply (q_lt_le_trans ???? H3); rewrite < H2; - apply (q_lt_trans ??? K); apply sum_bases_increasing; - assumption;]]]]] -|1,3: intros; right; split; - [1,4: clear H2; cases (value (q-Qpos (\fst b)) l1); - cases (H2 (q_le_to_diff_ge_OQ ?? (? H1))); - [1: intro; apply q_lt_to_le;assumption; - |3: simplify; cases H4; apply q_le_minus; assumption; - |2,5: simplify; cases H4; rewrite > H5; rewrite > H6; - apply q_le_minus; apply sum_bases_empty_nat_of_q_le_q; - |4: intro X; rewrite > X; apply q_eq_to_le; reflexivity; - |*: simplify; apply q_le_minus; cases H4; assumption;] - |2,5: cases (value (q-Qpos (\fst b)) l1); - cases (H4 (q_le_to_diff_ge_OQ ?? (? H1))); - [1,4: intros; [apply q_lt_to_le|apply q_eq_to_le;symmetry] assumption; - |3,6: cases H5; simplify; change with (q < sum_bases l1 (S (\fst w)) + Qpos (\fst b)); - apply q_lt_plus; assumption; - |2,5: simplify; cases H5; rewrite > H6; simplify; rewrite > H7; - apply q_lt_plus; apply sum_bases_empty_nat_of_q_le_q_one;] - |*: cases (value (q-Qpos (\fst b)) l1); simplify; - cases (H4 (q_le_to_diff_ge_OQ ?? (? H1))); - [1,4: intros; [apply q_lt_to_le|apply q_eq_to_le;symmetry] assumption; - |3,6: cases H5; assumption; - |*: cases H5; rewrite > H6; rewrite > H8; - elim (\fst w); [1,3:reflexivity;] simplify; assumption;]] -|2: clear value H2; simplify; intros; right; split; [assumption|3:reflexivity] - rewrite > q_plus_sym; rewrite > q_plus_OQ; assumption; -|4: intros; left; split; reflexivity;] +lemma len_bases_gt_O: ∀f.O < \len (bars f). +intros; generalize in match (bars_begin_OQ f); cases (bars f); intros; +[2: simplify; apply le_S_S; apply le_O_n; +|1: normalize in H; destruct H;] +qed. + +lemma all_bases_positive : ∀f:q_f.∀i. OQ < nth_base (bars f) (S i). +intro f; generalize in match (bars_begin_OQ f); generalize in match (bars_sorted f); +cases (len_gt_non_empty ?? (len_bases_gt_O f)); intros; +cases (cmp_nat (\len l) i); +[2: lapply (sorted_tail_bigger q2_lt ?? ▭ H ? H2) as K; + simplify in H1; rewrite < H1; apply K; +|1: simplify; elim l in i H2;[simplify; rewrite > nth_nil; apply (q_pos_OQ one)] + cases n in H3; intros; [simplify in H3; cases (not_le_Sn_O ? H3)] + apply (H2 n1); simplify in H3; apply (le_S_S_to_le ?? H3);] qed. -lemma value_OQ_l: - ∀l,i.i < start l → \snd (\fst (value l i)) = OQ. -intros; cases (value l i) (q Hq); cases Hq; clear Hq; simplify; cases H1; clear H1; -try assumption; cases H2; cases (?:False); apply (q_lt_le_incompat ?? H H6); +alias symbol "lt" (instance 9) = "Q less than". +alias symbol "lt" (instance 7) = "natural 'less than'". +alias symbol "lt" (instance 6) = "natural 'less than'". +alias symbol "lt" (instance 5) = "Q less than". +alias symbol "lt" (instance 4) = "natural 'less than'". +alias symbol "lt" (instance 2) = "natural 'less than'". +alias symbol "leq" = "Q less or equal than". +coinductive value_spec (f : list bar) (i : ℚ) : ℚ × ℚ → CProp ≝ +| value_of : ∀j,q. + nth_height f j = q → nth_base f j < i → j < \len f → + (∀n.n H6; + rewrite < H1; simplify; rewrite > nth_len; unfold match_pred; + cases (q_cmp (Qpos i) (\fst x)); simplify; + intros (X Hs); [2: destruct X] clear X; + cases (sorted_pivot q2_lt ??? ▭ Hs); + cut (\len l1 ≤ n) as Hn; [2: + rewrite > H1; cases i1 in H4; simplify; intro X; [2: assumption] + apply lt_to_le; assumption;] + unfold nth_base; rewrite > (nth_append_ge_len ????? Hn); + cut (n - \len l1 < \len (x::l2)) as K; [2: + simplify; rewrite > H1; rewrite > (?:\len l2 = \len f - \len (l1 @ [x]));[2: + rewrite > H6; repeat rewrite > len_append; simplify; + repeat rewrite < plus_n_Sm; rewrite < plus_n_O; simplify; + rewrite > sym_plus; rewrite < minus_plus_m_m; reflexivity;] + rewrite > len_append; rewrite > H1; simplify; rewrite < plus_n_SO; + apply le_S_S; clear H1 H6 H7 Hs H8 H9 Hn x l2 l1 H4 H3 H2 H; + elim (\len f) in i1 n H5; [cases (not_le_Sn_O ? H);] + simplify; cases n2; [ repeat rewrite < minus_n_O; apply le_S_S_to_le; assumption] + cases n1 in H1; [intros; rewrite > eq_minus_n_m_O; apply le_O_n] + intros; simplify; apply H; apply le_S_S_to_le; assumption;] + cases (n - \len l1) in K; simplify; intros; [ assumption] + lapply (H9 ? (le_S_S_to_le ?? H10)) as W; apply (q_le_trans ??? H7); + apply q_lt_to_le; apply W; + |2: cases (not_le_Sn_n i1); rewrite > H in ⊢ (??%); + apply (trans_le ??? ? H4); cases i1 in H3; intros; apply le_S_S; + [ apply le_O_n; | assumption]] +|3: unfold match_domain; cases (cases_find bar (match_pred i) f ▭); [ + cases i1 in H; intros; simplify; [assumption] + apply lt_S_to_lt; assumption;] + rewrite > H; cases (\len f) in len_bases_gt_O_f; intros; [cases (not_le_Sn_O ? H3)] + simplify; apply le_n; +|4: intros; unfold match_domain in H; cases (cases_find bar (match_pred i) f ▭) in H; simplify; intros; + [1: lapply (H3 n); [2: cases i1 in H4; intros [assumption] apply le_S; assumption;] + unfold match_pred in Hletin; cases (q_cmp (Qpos i) (\fst (\nth f ▭ n))) in Hletin; + simplify; intros; [destruct H6] assumption; + |2: destruct H; cases f in len_bases_gt_O_f H2 H3; clear H1; simplify; intros; + [cases (not_le_Sn_O ? H)] lapply (H1 n); [2: apply le_S; assumption] + unfold match_pred in Hletin; cases (q_cmp (Qpos i) (\fst (\nth (b::l) ▭ n))) in Hletin; + simplify; intros; [destruct H4] assumption;]] +qed. + +lemma bars_begin_lt_Qpos : ∀q,r. nth_base (bars q) O bars_begin_OQ; apply q_pos_OQ; qed. - -lemma value_OQ_r: - ∀l,i.start l + sum_bases (bars l) (len (bars l)) ≤ i → \snd (\fst (value l i)) = OQ. -intros; cases (value l i) (q Hq); cases Hq; clear Hq; simplify; cases H1; clear H1; -try assumption; cases H2; cases (?:False); apply (q_lt_le_incompat ?? H7 H); + +lemma value : q_f → ratio → ℚ × ℚ. +intros; cases (value_lemma (bars q) ?? r); +[ apply bars_sorted. +| apply len_bases_gt_O; +| apply w; +| apply bars_begin_lt_Qpos;] qed. - -lemma value_OQ_e: - ∀l,i.bars l = [] → \snd (\fst (value l i)) = OQ. -intros; cases (value l i) (q Hq); cases Hq; clear Hq; simplify; cases H1; clear H1; -try assumption; cases H2; cases (?:False); apply (H1 H); + +lemma cases_value : ∀f,i. value_spec (bars f) (Qpos i) (value f i). +intros; unfold value; +cases (value_lemma (bars f) (bars_sorted f) (len_bases_gt_O f) i (bars_begin_lt_Qpos f i)); +assumption; qed. -inductive value_ok_spec (f : q_f) (i : ℚ) : nat × ℚ → Type ≝ - | value_ok : ∀n,q. n ≤ (len (bars f)) → - q = \snd (nth (bars f) ▭ n) → - sum_bases (bars f) n ≤ ⅆ[i,start f] → - ⅆ[i, start f] < sum_bases (bars f) (S n) → value_ok_spec f i 〈n,q〉. - -lemma value_ok: - ∀f,i.bars f ≠ [] → start f ≤ i → i < start f + sum_bases (bars f) (len (bars f)) → - value_ok_spec f i (\fst (value f i)). -intros; cases (value f i); simplify; -cases H3; simplify; clear H3; cases H4; clear H4; -[1,2,3: cases (?:False); - [1: apply (q_lt_le_incompat ?? H3 H1); - |2: apply (q_lt_le_incompat ?? H2 H3); - |3: apply (H H3);] -|4: cases H7; clear H7; cases w in H3 H4 H5 H6 H8; simplify; intros; - constructor 1; assumption;] -qed. +definition same_values ≝ λl1,l2:q_f.∀input. value l1 input = value l2 input. -definition same_values ≝ - λl1,l2:q_f. - ∀input.\snd (\fst (value l1 input)) = \snd (\fst (value l2 input)). +definition same_bases ≝ λl1,l2:list bar. ∀i.\fst (\nth l1 ▭ i) = \fst (\nth l2 ▭ i). -definition same_bases ≝ - λl1,l2:q_f. - (∀i.\fst (nth (bars l1) ▭ i) = \fst (nth (bars l2) ▭ i)). +lemma same_bases_cons: ∀a,b,l1,l2. + same_bases l1 l2 → \fst a = \fst b → same_bases (a::l1) (b::l2). +intros; intro; cases i; simplify; [assumption;] apply (H n); +qed. alias symbol "lt" = "Q less than". lemma unpos: ∀x:ℚ.OQ < x → ∃r:ratio.Qpos r = x. intro; cases x; intros; [2:exists [apply r] reflexivity] cases (?:False); -[ apply (q_lt_corefl ? H)|apply (q_neg_gt ? H)] +[ apply (q_lt_corefl ? H)| cases (q_lt_le_incompat ?? (q_neg_gt ?) (q_lt_to_le ?? H))] qed. + +notation < "x \blacksquare" non associative with precedence 50 for @{'unpos $x}. +interpretation "hide unpos proof" 'unpos x = (unpos x _). +