X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;ds=sidebyside;f=helm%2Fsoftware%2Fmatita%2Fcontribs%2Fformal_topology%2Foverlap%2Fo-algebra.ma;h=4c61f0fb47753fc191b383a9f74bff27c0d718de;hb=b24dab33816abbeedb460ca4a19b838104ba2e29;hp=9e8b473b6e8ff85d753ed67da84af87aefa9b208;hpb=05958b9e55bdbbde3b61211633237ebeaa07bb6d;p=helm.git diff --git a/helm/software/matita/contribs/formal_topology/overlap/o-algebra.ma b/helm/software/matita/contribs/formal_topology/overlap/o-algebra.ma index 9e8b473b6..4c61f0fb4 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/o-algebra.ma +++ b/helm/software/matita/contribs/formal_topology/overlap/o-algebra.ma @@ -17,42 +17,29 @@ include "logic/cprop_connectives.ma". inductive bool : Type := true : bool | false : bool. -<<<<<<< .mine -lemma BOOL : setoid. -======= lemma BOOL : objs1 SET. ->>>>>>> .r9407 constructor 1; [apply bool] constructor 1; [ intros (x y); apply (match x with [ true ⇒ match y with [ true ⇒ True | _ ⇒ False] | false ⇒ match y with [ true ⇒ False | false ⇒ True ]]); | whd; simplify; intros; cases x; apply I; | whd; simplify; intros 2; cases x; cases y; simplify; intros; assumption; -| whd; simplify; intros 3; cases x; cases y; cases z; simplify; intros; try assumption; apply I] +| whd; simplify; intros 3; cases x; cases y; cases z; simplify; intros; + try assumption; apply I] qed. -definition hint: objs1 SET → setoid. - intros; apply o; -qed. +definition setoid_OF_SET: objs1 SET → setoid. + intros; apply o; qed. -coercion hint. +coercion setoid_OF_SET. lemma IF_THEN_ELSE_p : ∀S:setoid.∀a,b:S.∀x,y:BOOL.x = y → (λm.match m with [ true ⇒ a | false ⇒ b ]) x = (λm.match m with [ true ⇒ a | false ⇒ b ]) y. +whd in ⊢ (?→?→?→%→?); intros; cases x in H; cases y; simplify; intros; try apply refl; whd in H; cases H; qed. -<<<<<<< .mine interpretation "unary morphism comprehension with no proof" 'comprehension T P = -======= -lemma if_then_else : ∀T:SET. ∀a,b:T. arrows1 SET BOOL T. -intros; constructor 1; intros; -[ apply (match c with [ true ⇒ t | false ⇒ t1 ]); -| apply (IF_THEN_ELSE_p T t t1 a a' H);] -qed. - -interpretation "mk " 'comprehension T P = ->>>>>>> .r9407 (mk_unary_morphism T _ P _). notation > "hvbox({ ident i ∈ s | term 19 p | by })" with precedence 90 @@ -63,24 +50,12 @@ for @{ 'comprehension_by $s (λ${ident i}:$_. $p) $by}. interpretation "unary morphism comprehension with proof" 'comprehension_by s \eta.f p = (mk_unary_morphism s _ f p). -<<<<<<< .mine -======= -definition A : ∀S:SET.∀a,b:S.arrows1 SET BOOL S. -apply (λS,a,b.{ x ∈ BOOL | match x with [ true ⇒ a | false ⇒ b] | IF_THEN_ELSE_p S a b}). -qed. - ->>>>>>> .r9407 record OAlgebra : Type := { oa_P :> SET; oa_leq : binary_morphism1 oa_P oa_P CPROP; (* CPROP is setoid1 *) oa_overlap: binary_morphism1 oa_P oa_P CPROP; -<<<<<<< .mine - oa_meet: ∀I:setoid.unary_morphism (unary_morphism_setoid I oa_P) oa_P; - oa_join: ∀I:setoid.unary_morphism (unary_morphism_setoid I oa_P) oa_P; -======= oa_meet: ∀I:SET.unary_morphism (arrows1 SET I oa_P) oa_P; oa_join: ∀I:SET.unary_morphism (arrows1 SET I oa_P) oa_P; ->>>>>>> .r9407 oa_one: oa_P; oa_zero: oa_P; oa_leq_refl: ∀a:oa_P. oa_leq a a; @@ -91,20 +66,12 @@ record OAlgebra : Type := { oa_join_sup: ∀I.∀p_i.∀p:oa_P.oa_leq (oa_join I p_i) p → ∀i:I.oa_leq (p_i i) p; oa_zero_bot: ∀p:oa_P.oa_leq oa_zero p; oa_one_top: ∀p:oa_P.oa_leq p oa_one; - oa_overlap_preservers_meet: + oa_overlap_preservers_meet_: ∀p,q.oa_overlap p q → oa_overlap p (oa_meet ? { x ∈ BOOL | match x with [ true ⇒ p | false ⇒ q ] | IF_THEN_ELSE_p oa_P p q }); -<<<<<<< .mine oa_join_split: - ∀I:setoid.∀p.∀q:I ⇒ oa_P.oa_overlap p (oa_join I q) ⇔ ∃i:I.oa_overlap p (q i); - (* - oa_base : setoid; -======= - (*(oa_meet BOOL (if_then_else oa_P p q));*) - oa_join_split: (* ha I → oa_P da castare a funX (ums A oa_P) *) ∀I:SET.∀p.∀q:arrows1 SET I oa_P.oa_overlap p (oa_join I q) ⇔ ∃i:I.oa_overlap p (q i); (*oa_base : setoid; ->>>>>>> .r9407 oa_enum : ums oa_base oa_P; oa_density: ∀p,q.(∀i.oa_overlap p (oa_enum i) → oa_overlap q (oa_enum i)) → oa_leq p q *) @@ -122,19 +89,41 @@ notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (∧) \below (\ non associative with precedence 50 for @{ 'oa_meet $p }. notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (∧) \below (ident i ∈  I) break term 90 p)" non associative with precedence 50 for @{ 'oa_meet_mk (λ${ident i}:$I.$p) }. + +(* notation < "hovbox(a ∧ b)" left associative with precedence 35 for @{ 'oa_meet_mk (λ${ident i}:$_.match $i with [ true ⇒ $a | false ⇒ $b ]) }. - +*) notation > "hovbox(∧ f)" non associative with precedence 60 for @{ 'oa_meet $f }. +(* notation > "hovbox(a ∧ b)" left associative with precedence 50 for @{ 'oa_meet (mk_unary_morphism BOOL ? (λx__:bool.match x__ with [ true ⇒ $a | false ⇒ $b ]) (IF_THEN_ELSE_p ? $a $b)) }. - +*) interpretation "o-algebra meet" 'oa_meet f = (fun_1 __ (oa_meet __) f). interpretation "o-algebra meet with explicit function" 'oa_meet_mk f = (fun_1 __ (oa_meet __) (mk_unary_morphism _ _ f _)). +definition binary_meet : ∀O:OAlgebra. binary_morphism1 O O O. +intros; split; +[ intros (p q); + apply (∧ { x ∈ BOOL | match x with [ true ⇒ p | false ⇒ q ] | IF_THEN_ELSE_p ? p q }); +| intros; apply (prop_1 ?? (oa_meet O BOOL)); intro x; simplify; + cases x; simplify; assumption;] +qed. + +notation "hovbox(a ∧ b)" left associative with precedence 35 +for @{ 'oa_meet_bin $a $b }. +interpretation "o-algebra binary meet" 'oa_meet_bin a b = + (fun1 ___ (binary_meet _) a b). + +lemma oa_overlap_preservers_meet: ∀O:OAlgebra.∀p,q:O.p >< q → p >< (p ∧ q). +intros; lapply (oa_overlap_preservers_meet_ O p q f); +lapply (prop1 O O CPROP (oa_overlap O) p p ? (p ∧ q) # ?); +[3: apply (if ?? (Hletin1)); apply Hletin;|skip] apply refl1; +qed. + notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (∨) \below (\emsp) \nbsp term 90 p)" non associative with precedence 49 for @{ 'oa_join $p }. notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (∨) \below (ident i ∈  I) break term 90 p)" @@ -153,44 +142,26 @@ interpretation "o-algebra join with explicit function" 'oa_join_mk f = (fun_1 __ (oa_join __) (mk_unary_morphism _ _ f _)). record ORelation (P,Q : OAlgebra) : Type ≝ { - or_f :> arrows1 SET P Q; - or_f_minus_star : arrows1 SET P Q; - or_f_star : arrows1 SET Q P; - or_f_minus : arrows1 SET Q P; - or_prop1 : ∀p,q. (or_f p ≤ q) = (p ≤ or_f_star q); - or_prop2 : ∀p,q. (or_f_minus p ≤ q) = (p ≤ or_f_minus_star q); - or_prop3 : ∀p,q. (or_f p >< q) = (p >< or_f_minus q) + or_f_ : arrows1 SET P Q; + or_f_minus_star_ : arrows1 SET P Q; + or_f_star_ : arrows1 SET Q P; + or_f_minus_ : arrows1 SET Q P; + or_prop1_ : ∀p,q. (or_f_ p ≤ q) = (p ≤ or_f_star_ q); + or_prop2_ : ∀p,q. (or_f_minus_ p ≤ q) = (p ≤ or_f_minus_star_ q); + or_prop3_ : ∀p,q. (or_f_ p >< q) = (p >< or_f_minus_ q) }. -notation "r \sup *" non associative with precedence 90 for @{'OR_f_star $r}. -notation > "r *" non associative with precedence 90 for @{'OR_f_star $r}. -interpretation "o-relation f*" 'OR_f_star r = (or_f_star _ _ r). - -notation "r \sup (⎻* )" non associative with precedence 90 for @{'OR_f_minus_star $r}. -notation > "r⎻*" non associative with precedence 90 for @{'OR_f_minus_star $r}. -interpretation "o-relation f⎻*" 'OR_f_minus_star r = (or_f_minus_star _ _ r). - -notation "r \sup ⎻" non associative with precedence 90 for @{'OR_f_minus $r}. -notation > "r⎻" non associative with precedence 90 for @{'OR_f_minus $r}. -interpretation "o-relation f⎻" 'OR_f_minus r = (or_f_minus _ _ r). - -axiom DAEMON: False. definition ORelation_setoid : OAlgebra → OAlgebra → setoid1. intros (P Q); constructor 1; [ apply (ORelation P Q); | constructor 1; -<<<<<<< .mine - [ alias symbol "and" = "constructive and". - apply (λp,q. And4 (∀a.p⎻* a = q⎻* a) (∀a.p⎻ a = q⎻ a) - (∀a.p a = q a) (∀a.p* a = q* a)); - | whd; simplify; intros; repeat split; intros; apply refl; -======= - [ apply (λp,q. eq1 ? p⎻* q⎻* ∧ eq1 ? p⎻ q⎻ ∧ eq1 ? p q ∧ eq1 ? p* q* ); + [ apply (λp,q. And4 (eq1 ? (or_f_minus_star_ ?? p) (or_f_minus_star_ ?? q)) + (eq1 ? (or_f_minus_ ?? p) (or_f_minus_ ?? q)) + (eq1 ? (or_f_ ?? p) (or_f_ ?? q)) + (eq1 ? (or_f_star_ ?? p) (or_f_star_ ?? q))); | whd; simplify; intros; repeat split; intros; apply refl1; ->>>>>>> .r9407 -<<<<<<< .mine | whd; simplify; intros; cases H; clear H; split; intro a; apply sym; generalize in match a;assumption; | whd; simplify; intros; cases H; cases H1; clear H H1; split; intro a; @@ -199,87 +170,115 @@ constructor 1; | apply (.= (H4 a)); apply H8; | apply (.= (H5 a)); apply H9;]]] qed. -======= - | whd; simplify; intros; cases H; cases H1; cases H3; clear H H3 H1; - repeat split; intros; apply sym1; assumption; - | whd; simplify; intros; cases H; cases H1; cases H2; cases H4; cases H6; cases H8; - repeat split; intros; clear H H1 H2 H4 H6 H8; apply trans1; - [2: apply H10; - |5: apply H11; - |8: apply H7; - |11: apply H3; - |1,4,7,10: skip - |*: assumption - ]]] + +definition or_f_minus_star: ∀P,Q:OAlgebra.ORelation_setoid P Q ⇒ arrows1 SET P Q. + intros; constructor 1; + [ apply or_f_minus_star_; + | intros; cases H; assumption] qed. ->>>>>>> .r9407 -<<<<<<< .mine -definition ORelation_composition : ∀P,Q,R. -======= -lemma hint1 : ∀P,Q. ORelation_setoid P Q → arrows1 SET P Q. intros; apply (or_f ?? c);qed. -coercion hint1. +definition or_f: ∀P,Q:OAlgebra.ORelation_setoid P Q ⇒ arrows1 SET P Q. + intros; constructor 1; + [ apply or_f_; + | intros; cases H; assumption] +qed. + +coercion or_f. + +definition or_f_minus: ∀P,Q:OAlgebra.ORelation_setoid P Q ⇒ arrows1 SET Q P. + intros; constructor 1; + [ apply or_f_minus_; + | intros; cases H; assumption] +qed. + +definition or_f_star: ∀P,Q:OAlgebra.ORelation_setoid P Q ⇒ arrows1 SET Q P. + intros; constructor 1; + [ apply or_f_star_; + | intros; cases H; assumption] +qed. + +lemma arrows1_OF_ORelation_setoid : ∀P,Q. ORelation_setoid P Q → arrows1 SET P Q. +intros; apply (or_f ?? c); +qed. + +coercion arrows1_OF_ORelation_setoid nocomposites. + +lemma umorphism_OF_ORelation_setoid : ∀P,Q. ORelation_setoid P Q → P ⇒ Q. +intros; apply (or_f ?? c); +qed. + +coercion umorphism_OF_ORelation_setoid. + + +lemma uncurry_arrows : ∀B,C. arrows1 SET B C → B → C. +intros; apply ((fun_1 ?? c) t); +qed. + +coercion uncurry_arrows 1. lemma hint3 : ∀P,Q. arrows1 SET P Q → P ⇒ Q. intros; apply c;qed. -coercion hint3. +coercion hint3 nocomposites. +(* lemma hint2: OAlgebra → setoid. intros; apply (oa_P o). qed. -coercion hint2. +coercion hint2 nocomposites. +*) + + +notation "r \sup *" non associative with precedence 90 for @{'OR_f_star $r}. +notation > "r *" non associative with precedence 90 for @{'OR_f_star $r}. + +notation "r \sup (⎻* )" non associative with precedence 90 for @{'OR_f_minus_star $r}. +notation > "r⎻*" non associative with precedence 90 for @{'OR_f_minus_star $r}. -definition composition : ∀P,Q,R. ->>>>>>> .r9407 +notation "r \sup ⎻" non associative with precedence 90 for @{'OR_f_minus $r}. +notation > "r⎻" non associative with precedence 90 for @{'OR_f_minus $r}. + +interpretation "o-relation f⎻*" 'OR_f_minus_star r = (fun_1 __ (or_f_minus_star _ _) r). +interpretation "o-relation f⎻" 'OR_f_minus r = (fun_1 __ (or_f_minus _ _) r). +interpretation "o-relation f*" 'OR_f_star r = (fun_1 __ (or_f_star _ _) r). + +definition or_prop1 : ∀P,Q:OAlgebra.∀F:ORelation_setoid P Q.∀p,q. + (F p ≤ q) = (p ≤ F* q). +intros; apply (or_prop1_ ?? F p q); +qed. + +definition or_prop2 : ∀P,Q:OAlgebra.∀F:ORelation_setoid P Q.∀p,q. + (F⎻ p ≤ q) = (p ≤ F⎻* q). +intros; apply (or_prop2_ ?? F p q); +qed. + +definition or_prop3 : ∀P,Q:OAlgebra.∀F:ORelation_setoid P Q.∀p,q. + (F p >< q) = (p >< F⎻ q). +intros; apply (or_prop3_ ?? F p q); +qed. + +definition ORelation_composition : ∀P,Q,R. binary_morphism1 (ORelation_setoid P Q) (ORelation_setoid Q R) (ORelation_setoid P R). intros; constructor 1; [ intros (F G); constructor 1; -<<<<<<< .mine - [ apply {x ∈ P | G (F x)}; intros; simplify; apply (†(†H)); - | apply {x ∈ P | G⎻* (F⎻* x)}; intros; simplify; apply (†(†H)); - | apply {x ∈ R | F* (G* x)}; intros; simplify; apply (†(†H)); - | apply {x ∈ R | F⎻ (G⎻ x)}; intros; simplify; apply (†(†H)); - | intros; simplify; - lapply (or_prop1 ?? G (F p) q) as H1; lapply (or_prop1 ?? F p (G* q)) as H2; - split; intro H; - [ apply (if1 ?? H2); apply (if1 ?? H1); apply H; - | apply (fi1 ?? H1); apply (fi1 ?? H2); apply H;] - | intros; simplify; - lapply (or_prop2 ?? G p (F⎻* q)) as H1; lapply (or_prop2 ?? F (G⎻ p) q) as H2; - split; intro H; - [ apply (if1 ?? H1); apply (if1 ?? H2); apply H; - | apply (fi1 ?? H2); apply (fi1 ?? H1); apply H;] - | intros; simplify; - lapply (or_prop3 ?? F p (G⎻ q)) as H1; lapply (or_prop3 ?? G (F p) q) as H2; - split; intro H; - [ apply (if1 ?? H1); apply (if1 ?? H2); apply H; - | apply (fi1 ?? H2); apply (fi1 ?? H1); apply H;]] -| intros; simplify; split; simplify; intros; elim DAEMON;] -======= - [ apply (G ∘ F); + [ lapply (G ∘ F); + apply (G ∘ F); | apply (G⎻* ∘ F⎻* ); | apply (F* ∘ G* ); | apply (F⎻ ∘ G⎻); - | intros; change with ((G (F p) ≤ q) = (p ≤ (F* (G* q)))); - apply (.= or_prop1 ??? (F p) ?); - apply (.= or_prop1 ??? p ?); - apply refl1 - | intros; change with ((F⎻ (G⎻ p) ≤ q) = (p ≤ (G⎻* (F⎻* q)))); - apply (.= or_prop2 ??? (G⎻ p) ?); - apply (.= or_prop2 ??? p ?); - apply refl1; + | intros; + change with ((G (F p) ≤ q) = (p ≤ (F* (G* q)))); + apply (.= (or_prop1 :?)); + apply (or_prop1 :?); + | intros; + change with ((F⎻ (G⎻ p) ≤ q) = (p ≤ (G⎻* (F⎻* q)))); + apply (.= (or_prop2 :?)); + apply or_prop2 ; | intros; change with ((G (F (p)) >< q) = (p >< (F⎻ (G⎻ q)))); - apply (.= or_prop3 ??? (F p) ?); - apply (.= or_prop3 ??? p ?); - apply refl1 + apply (.= (or_prop3 :?)); + apply or_prop3; ] -| intros; repeat split; simplify; cases DAEMON (* - [ apply trans1; [2: apply prop1; [3: apply rule #; | skip | 4: - apply rule (†?); - - lapply (.= ((†H1)‡#)); [8: apply Hletin; - [ apply trans1; [2: lapply (prop1); [apply Hletin; -*)] ->>>>>>> .r9407 +| intros; split; simplify; + [1,3: unfold arrows1_OF_ORelation_setoid; apply ((†H)‡(†H1)); + |2,4: apply ((†H1)‡(†H));]] qed. definition OA : category1. @@ -287,21 +286,15 @@ split; [ apply (OAlgebra); | intros; apply (ORelation_setoid o o1); | intro O; split; -<<<<<<< .mine - [1,2,3,4: constructor 1; [1,3,5,7:apply (λx.x);|*:intros;assumption] - |5,6,7:intros;split;intros; assumption;] -|4: apply ORelation_composition; -|*: elim DAEMON;] -qed. - - - -======= [1,2,3,4: apply id1; |5,6,7:intros; apply refl1;] -| apply composition; -| intros; repeat split; unfold composition; simplify; - [1,3: apply (comp_assoc1); | 2,4: apply ((comp_assoc1 ????????) \sup -1);] -| intros; repeat split; unfold composition; simplify; apply id_neutral_left1; -| intros; repeat split; unfold composition; simplify; apply id_neutral_right1;] -qed.>>>>>>> .r9407 +| apply ORelation_composition; +| intros (P Q R S F G H); split; + [ change with (H⎻* ∘ G⎻* ∘ F⎻* = H⎻* ∘ (G⎻* ∘ F⎻* )); + apply (comp_assoc1 ????? (F⎻* ) (G⎻* ) (H⎻* )); + | apply ((comp_assoc1 ????? (H⎻) (G⎻) (F⎻))^-1); + | apply ((comp_assoc1 ????? F G H)^-1); + | apply ((comp_assoc1 ????? H* G* F* ));] +| intros; split; unfold ORelation_composition; simplify; apply id_neutral_left1; +| intros; split; unfold ORelation_composition; simplify; apply id_neutral_right1;] +qed. \ No newline at end of file