X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;ds=sidebyside;f=helm%2Fsoftware%2Fmatita%2Fdama%2Fgroup.ma;h=104dcf274e3943727d090dc8ff8fddd5f7bca59e;hb=10f29fdd78ee089a9a94446207b543d33d6c851c;hp=87cc25855cb4ce1c17c47b254e9d7d2e959e0d2b;hpb=39c55604f8114e2e8f9f9769acd328de8f19c7e4;p=helm.git diff --git a/helm/software/matita/dama/group.ma b/helm/software/matita/dama/group.ma index 87cc25855..104dcf274 100644 --- a/helm/software/matita/dama/group.ma +++ b/helm/software/matita/dama/group.ma @@ -12,9 +12,9 @@ (* *) (**************************************************************************) -set "baseuri" "cic:/matita/group/". -include "excedence.ma". + +include "excess.ma". definition left_neutral ≝ λC:apartness.λop.λe:C. ∀x:C. op e x ≈ x. definition right_neutral ≝ λC:apartness.λop. λe:C. ∀x:C. op x e ≈ x. @@ -80,9 +80,17 @@ coercion cic:/matita/group/feq_plusl.con nocomposites. lemma plus_strong_extr: ∀G:abelian_group.∀z:G.strong_ext ? (λx.x + z). intros 5 (G z x y A); simplify in A; lapply (plus_comm ? z x) as E1; lapply (plus_comm ? z y) as E2; -lapply (ap_rewl ???? E1 A) as A1; lapply (ap_rewr ???? E2 A1) as A2; +lapply (Ap≪ ? E1 A) as A1; lapply (Ap≫ ? E2 A1) as A2; apply (plus_strong_ext ???? A2); qed. + +lemma plus_cancl_ap: ∀G:abelian_group.∀x,y,z:G.z+x # z + y → x # y. +intros; apply plus_strong_ext; assumption; +qed. + +lemma plus_cancr_ap: ∀G:abelian_group.∀x,y,z:G.x+z # y+z → x # y. +intros; apply plus_strong_extr; assumption; +qed. lemma feq_plusr: ∀G:abelian_group.∀x,y,z:G. y ≈ z → y+x ≈ z+x. intros (G x y z Eyz); apply (strong_ext_to_ext ?? (plus_strong_extr ? x)); @@ -103,33 +111,39 @@ coercion cic:/matita/group/feq_plusl_sym_.con nocomposites. lemma fap_plusl: ∀G:abelian_group.∀x,y,z:G. y # z → x+y # x+z. intros (G x y z Ayz); apply (plus_strong_ext ? (-x)); -apply (ap_rewl ??? ((-x + x) + y)); +apply (Ap≪ ((-x + x) + y)); [1: apply plus_assoc; -|2: apply (ap_rewr ??? ((-x +x) +z)); +|2: apply (Ap≫ ((-x +x) +z)); [1: apply plus_assoc; - |2: apply (ap_rewl ??? (0 + y)); + |2: apply (Ap≪ (0 + y)); [1: apply (feq_plusr ???? (opp_inverse ??)); - |2: apply (ap_rewl ???? (zero_neutral ? y)); - apply (ap_rewr ??? (0 + z) (opp_inverse ??)); - apply (ap_rewr ???? (zero_neutral ??)); assumption;]]] + |2: apply (Ap≪ ? (zero_neutral ? y)); + apply (Ap≫ (0 + z) (opp_inverse ??)); + apply (Ap≫ ? (zero_neutral ??)); assumption;]]] qed. lemma fap_plusr: ∀G:abelian_group.∀x,y,z:G. y # z → y+x # z+x. intros (G x y z Ayz); apply (plus_strong_extr ? (-x)); -apply (ap_rewl ??? (y + (x + -x))); +apply (Ap≪ (y + (x + -x))); [1: apply (eq_sym ??? (plus_assoc ????)); -|2: apply (ap_rewr ??? (z + (x + -x))); +|2: apply (Ap≫ (z + (x + -x))); [1: apply (eq_sym ??? (plus_assoc ????)); - |2: apply (ap_rewl ??? (y + (-x+x)) (plus_comm ? x (-x))); - apply (ap_rewl ??? (y + 0) (opp_inverse ??)); - apply (ap_rewl ??? (0 + y) (plus_comm ???)); - apply (ap_rewl ??? y (zero_neutral ??)); - apply (ap_rewr ??? (z + (-x+x)) (plus_comm ? x (-x))); - apply (ap_rewr ??? (z + 0) (opp_inverse ??)); - apply (ap_rewr ??? (0 + z) (plus_comm ???)); - apply (ap_rewr ??? z (zero_neutral ??)); + |2: apply (Ap≪ (y + (-x+x)) (plus_comm ? x (-x))); + apply (Ap≪ (y + 0) (opp_inverse ??)); + apply (Ap≪ (0 + y) (plus_comm ???)); + apply (Ap≪ y (zero_neutral ??)); + apply (Ap≫ (z + (-x+x)) (plus_comm ? x (-x))); + apply (Ap≫ (z + 0) (opp_inverse ??)); + apply (Ap≫ (0 + z) (plus_comm ???)); + apply (Ap≫ z (zero_neutral ??)); assumption]] qed. + +lemma applus: ∀E:abelian_group.∀x,a,y,b:E.x + a # y + b → x # y ∨ a # b. +intros; cases (ap_cotransitive ??? (y+a) a1); [left|right] +[apply (plus_cancr_ap ??? a)|apply (plus_cancl_ap ??? y)] +assumption; +qed. lemma plus_cancl: ∀G:abelian_group.∀y,z,x:G. x+y ≈ x+z → y ≈ z. intros 6 (G y z x E Ayz); apply E; apply fap_plusl; assumption; @@ -169,7 +183,6 @@ qed. lemma feq_oppr: ∀G:abelian_group.∀x,y,z:G. y ≈ z → x ≈ -y → x ≈ -z. intros (G x y z H1 H2); apply (plus_cancr ??? z); -(* apply (eq_trans ??? 0 ? (opp_inverse ??)); *) apply (Eq≈ 0 ? (opp_inverse ??)); apply (Eq≈ (-y + z) H2); apply (Eq≈ (-y + y) H1); @@ -205,25 +218,3 @@ compose feq_plusl with feq_opp(H); apply H; assumption; qed. coercion cic:/matita/group/eq_opp_plusl.con nocomposites. - -lemma plus_cancr_ap: ∀G:abelian_group.∀x,y,z:G. x+z # y+z → x # y. -intros (G x y z H); lapply (fap_plusr ? (-z) ?? H) as H1; clear H; -lapply (ap_rewl ? (x + (z + -z)) ?? (plus_assoc ? x z (-z)) H1) as H2; clear H1; -lapply (ap_rewl ? (x + (-z + z)) ?? (plus_comm ?z (-z)) H2) as H1; clear H2; -lapply (ap_rewl ? (x + 0) ?? (opp_inverse ?z) H1) as H2; clear H1; -lapply (ap_rewl ? (0+x) ?? (plus_comm ?x 0) H2) as H1; clear H2; -lapply (ap_rewl ? x ?? (zero_neutral ?x) H1) as H2; clear H1; -lapply (ap_rewr ? (y + (z + -z)) ?? (plus_assoc ? y z (-z)) H2) as H3; -lapply (ap_rewr ? (y + (-z + z)) ?? (plus_comm ?z (-z)) H3) as H4; -lapply (ap_rewr ? (y + 0) ?? (opp_inverse ?z) H4) as H5; -lapply (ap_rewr ? (0+y) ?? (plus_comm ?y 0) H5) as H6; -lapply (ap_rewr ? y ?? (zero_neutral ?y) H6); -assumption; -qed. - -lemma pluc_cancl_ap: ∀G:abelian_group.∀x,y,z:G. z+x # z+y → x # y. -intros (G x y z H); apply (plus_cancr_ap ??? z); -apply (ap_rewl ???? (plus_comm ???)); -apply (ap_rewr ???? (plus_comm ???)); -assumption; -qed.