X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;ds=sidebyside;f=helm%2Fsoftware%2Fmatita%2Fdama%2Flattice.ma;h=1f605c257e2e13820be92d875ab5249da7cb09a0;hb=156e9d172f3fd2fd7f2d5f0f88c8662c2c0fd796;hp=9e91376d17bbe2be3dd82b0bd58b45454b032f04;hpb=0e93f77172427eed198b974e32c7f3e80d2c0251;p=helm.git diff --git a/helm/software/matita/dama/lattice.ma b/helm/software/matita/dama/lattice.ma index 9e91376d1..1f605c257 100644 --- a/helm/software/matita/dama/lattice.ma +++ b/helm/software/matita/dama/lattice.ma @@ -12,76 +12,171 @@ (* *) (**************************************************************************) -set "baseuri" "cic:/matita/lattice/". +include "excess.ma". -include "excedence.ma". - -record lattice : Type ≝ { - l_carr:> apartness; - join: l_carr → l_carr → l_carr; - meet: l_carr → l_carr → l_carr; - join_refl: ∀x.join x x ≈ x; - meet_refl: ∀x.meet x x ≈ x; - join_comm: ∀x,y:l_carr. join x y ≈ join y x; - meet_comm: ∀x,y:l_carr. meet x y ≈ meet y x; - join_assoc: ∀x,y,z:l_carr. join x (join y z) ≈ join (join x y) z; - meet_assoc: ∀x,y,z:l_carr. meet x (meet y z) ≈ meet (meet x y) z; - absorbjm: ∀f,g:l_carr. join f (meet f g) ≈ f; - absorbmj: ∀f,g:l_carr. meet f (join f g) ≈ f; - strong_extj: ∀x.strong_ext ? (join x); - strong_extm: ∀x.strong_ext ? (meet x) +record directed : Type ≝ { + dir_carr: apartness; + dir_op: dir_carr → dir_carr → dir_carr; + dir_op_refl: ∀x.dir_op x x ≈ x; + dir_op_comm: ∀x,y:dir_carr. dir_op x y ≈ dir_op y x; + dir_op_assoc: ∀x,y,z:dir_carr. dir_op x (dir_op y z) ≈ dir_op (dir_op x y) z; + dir_strong_extop: ∀x.strong_ext ? (dir_op x) }. -interpretation "Lattice meet" 'and a b = - (cic:/matita/lattice/meet.con _ a b). - -interpretation "Lattice join" 'or a b = - (cic:/matita/lattice/join.con _ a b). +definition excl ≝ + λl:directed.λa,b:dir_carr l.ap_apart (dir_carr l) a (dir_op l a b). -definition excl ≝ λl:lattice.λa,b:l.a # (a ∧ b). - -lemma excedence_of_lattice: lattice → excedence. -intro l; apply (mk_excedence l (excl l)); -[ intro x; unfold; intro H; unfold in H; apply (ap_coreflexive l x); - apply (ap_rewr ??? (x∧x) (meet_refl l x)); assumption; +lemma excess_of_directed: directed → excess. +intro l; apply (mk_excess (dir_carr l) (excl l)); +[ intro x; unfold; intro H; unfold in H; apply (ap_coreflexive (dir_carr l) x); + apply (ap_rewr ??? (dir_op l x x) (dir_op_refl ? x)); assumption; | intros 3 (x y z); unfold excl; intro H; - cases (ap_cotransitive ??? (x∧z∧y) H) (H1 H2); [2: - left; apply ap_symmetric; apply (strong_extm ? y); - apply (ap_rewl ???? (meet_comm ???)); - apply (ap_rewr ???? (meet_comm ???)); + cases (ap_cotransitive ??? (dir_op l (dir_op l x z) y) H) (H1 H2); [2: + left; apply ap_symmetric; apply (dir_strong_extop ? y); + apply (ap_rewl ???? (dir_op_comm ???)); + apply (ap_rewr ???? (dir_op_comm ???)); assumption] - cases (ap_cotransitive ??? (x∧z) H1) (H2 H3); [left; assumption] - right; apply (strong_extm ? x); apply (ap_rewr ???? (meet_assoc ????)); + cases (ap_cotransitive ??? (dir_op l x z) H1) (H2 H3); [left; assumption] + right; apply (dir_strong_extop ? x); apply (ap_rewr ???? (dir_op_assoc ????)); assumption] qed. -coercion cic:/matita/lattice/excedence_of_lattice.con. +record prelattice : Type ≝ { + pl_carr:> excess; + meet: pl_carr → pl_carr → pl_carr; + meet_refl: ∀x.meet x x ≈ x; + meet_comm: ∀x,y:pl_carr. meet x y ≈ meet y x; + meet_assoc: ∀x,y,z:pl_carr. meet x (meet y z) ≈ meet (meet x y) z; + strong_extm: ∀x.strong_ext ? (meet x); + le_to_eqm: ∀x,y.x ≤ y → x ≈ meet x y; + lem: ∀x,y.(meet x y) ≤ y +}. + +interpretation "prelattice meet" 'and a b = + (cic:/matita/lattice/meet.con _ a b). -lemma feq_ml: ∀ml:lattice.∀a,b,c:ml. a ≈ b → (c ∧ a) ≈ (c ∧ b). +lemma feq_ml: ∀ml:prelattice.∀a,b,c:ml. a ≈ b → (c ∧ a) ≈ (c ∧ b). intros (l a b c H); unfold eq in H ⊢ %; unfold Not in H ⊢ %; intro H1; apply H; clear H; apply (strong_extm ???? H1); qed. -lemma feq_jl: ∀ml:lattice.∀a,b,c:ml. a ≈ b → (c ∨ a) ≈ (c ∨ b). -intros (l a b c H); unfold eq in H ⊢ %; unfold Not in H ⊢ %; -intro H1; apply H; clear H; apply (strong_extj ???? H1); +lemma feq_mr: ∀ml:prelattice.∀a,b,c:ml. a ≈ b → (a ∧ c) ≈ (b ∧ c). +intros (l a b c H); +apply (Eq≈ ? (meet_comm ???)); apply (Eq≈ ?? (meet_comm ???)); +apply feq_ml; assumption; qed. - -lemma le_to_eqm: ∀ml:lattice.∀a,b:ml. a ≤ b → a ≈ (a ∧ b). -intros (l a b H); - unfold le in H; unfold excedence_of_lattice in H; - unfold excl in H; simplify in H; -unfold eq; assumption; + +lemma prelattice_of_directed: directed → prelattice. +intro l_; apply (mk_prelattice (excess_of_directed l_)); [apply (dir_op l_);] +unfold excess_of_directed; try unfold apart_of_excess; simplify; +unfold excl; simplify; +[intro x; intro H; elim H; clear H; + [apply (dir_op_refl l_ x); + lapply (Ap≫ ? (dir_op_comm ???) t) as H; clear t; + lapply (dir_strong_extop l_ ??? H); apply ap_symmetric; assumption + | lapply (Ap≪ ? (dir_op_refl ?x) t) as H; clear t; + lapply (dir_strong_extop l_ ??? H); apply (dir_op_refl l_ x); + apply ap_symmetric; assumption] +|intros 3 (x y H); cases H (H1 H2); clear H; + [lapply (Ap≪ ? (dir_op_refl ? (dir_op l_ x y)) H1) as H; clear H1; + lapply (dir_strong_extop l_ ??? H) as H1; clear H; + lapply (Ap≪ ? (dir_op_comm ???) H1); apply (ap_coreflexive ?? Hletin); + |lapply (Ap≪ ? (dir_op_refl ? (dir_op l_ y x)) H2) as H; clear H2; + lapply (dir_strong_extop l_ ??? H) as H1; clear H; + lapply (Ap≪ ? (dir_op_comm ???) H1);apply (ap_coreflexive ?? Hletin);] +|intros 4 (x y z H); cases H (H1 H2); clear H; + [lapply (Ap≪ ? (dir_op_refl ? (dir_op l_ x (dir_op l_ y z))) H1) as H; clear H1; + lapply (dir_strong_extop l_ ??? H) as H1; clear H; + lapply (Ap≪ ? (eq_sym ??? (dir_op_assoc ?x y z)) H1) as H; clear H1; + apply (ap_coreflexive ?? H); + |lapply (Ap≪ ? (dir_op_refl ? (dir_op l_ (dir_op l_ x y) z)) H2) as H; clear H2; + lapply (dir_strong_extop l_ ??? H) as H1; clear H; + lapply (Ap≪ ? (dir_op_assoc ?x y z) H1) as H; clear H1; + apply (ap_coreflexive ?? H);] +|intros (x y z H); elim H (H1 H1); clear H; + lapply (Ap≪ ? (dir_op_refl ??) H1) as H; clear H1; + lapply (dir_strong_extop l_ ??? H) as H1; clear H; + lapply (dir_strong_extop l_ ??? H1) as H; clear H1; + cases (ap_cotransitive ??? (dir_op l_ y z) H);[left|right|right|left] try assumption; + [apply ap_symmetric;apply (Ap≪ ? (dir_op_comm ???)); + |apply (Ap≫ ? (dir_op_comm ???)); + |apply ap_symmetric;] assumption; +|intros 4 (x y H H1); apply H; clear H; elim H1 (H H); + lapply (Ap≪ ? (dir_op_refl ??) H) as H1; clear H; + lapply (dir_strong_extop l_ ??? H1) as H; clear H1;[2: apply ap_symmetric] + assumption +|intros 3 (x y H); + cut (dir_op l_ x y ≈ dir_op l_ x (dir_op l_ y y)) as H1;[2: + intro; lapply (dir_strong_extop ???? a); apply (dir_op_refl l_ y); + apply ap_symmetric; assumption;] + lapply (Ap≪ ? (eq_sym ??? H1) H); apply (dir_op_assoc l_ x y y); + assumption; ] qed. -lemma le_to_eqj: ∀ml:lattice.∀a,b:ml. a ≤ b → b ≈ (a ∨ b). -intros (l a b H); lapply (le_to_eqm ??? H) as H1; -lapply (feq_jl ??? b H1) as H2; -apply (eq_trans ????? (join_comm ???)); -apply (eq_trans ?? (b∨a∧b) ?? H2); clear H1 H2 H; -apply (eq_trans ?? (b∨(b∧a)) ?? (feq_jl ???? (meet_comm ???))); -apply eq_sym; apply absorbjm; -qed. +record lattice_ : Type ≝ { + latt_mcarr:> prelattice; + latt_jcarr_: prelattice; + latt_with: pl_carr latt_jcarr_ = dual_exc (pl_carr latt_mcarr) +}. + +lemma latt_jcarr : lattice_ → prelattice. +intro l; +apply (mk_prelattice (dual_exc l)); unfold excess_OF_lattice_; +cases (latt_with l); simplify; +[apply meet|apply meet_refl|apply meet_comm|apply meet_assoc| +apply strong_extm| apply le_to_eqm|apply lem] +qed. + +coercion cic:/matita/lattice/latt_jcarr.con. + +interpretation "Lattice meet" 'and a b = + (cic:/matita/lattice/meet.con (cic:/matita/lattice/latt_mcarr.con _) a b). + +interpretation "Lattice join" 'or a b = + (cic:/matita/lattice/meet.con (cic:/matita/lattice/latt_jcarr.con _) a b). + +record lattice : Type ≝ { + latt_carr:> lattice_; + absorbjm: ∀f,g:latt_carr. (f ∨ (f ∧ g)) ≈ f; + absorbmj: ∀f,g:latt_carr. (f ∧ (f ∨ g)) ≈ f +}. + +notation "'meet'" non associative with precedence 50 for @{'meet}. +notation "'meet_refl'" non associative with precedence 50 for @{'meet_refl}. +notation "'meet_comm'" non associative with precedence 50 for @{'meet_comm}. +notation "'meet_assoc'" non associative with precedence 50 for @{'meet_assoc}. +notation "'strong_extm'" non associative with precedence 50 for @{'strong_extm}. +notation "'le_to_eqm'" non associative with precedence 50 for @{'le_to_eqm}. +notation "'lem'" non associative with precedence 50 for @{'lem}. +notation "'join'" non associative with precedence 50 for @{'join}. +notation "'join_refl'" non associative with precedence 50 for @{'join_refl}. +notation "'join_comm'" non associative with precedence 50 for @{'join_comm}. +notation "'join_assoc'" non associative with precedence 50 for @{'join_assoc}. +notation "'strong_extj'" non associative with precedence 50 for @{'strong_extj}. +notation "'le_to_eqj'" non associative with precedence 50 for @{'le_to_eqj}. +notation "'lej'" non associative with precedence 50 for @{'lej}. +interpretation "Lattice meet" 'meet = (cic:/matita/lattice/meet.con (cic:/matita/lattice/latt_mcarr.con _)). +interpretation "Lattice meet_refl" 'meet_refl = (cic:/matita/lattice/meet_refl.con (cic:/matita/lattice/latt_mcarr.con _)). +interpretation "Lattice meet_comm" 'meet_comm = (cic:/matita/lattice/meet_comm.con (cic:/matita/lattice/latt_mcarr.con _)). +interpretation "Lattice meet_assoc" 'meet_assoc = (cic:/matita/lattice/meet_assoc.con (cic:/matita/lattice/latt_mcarr.con _)). +interpretation "Lattice strong_extm" 'strong_extm = (cic:/matita/lattice/strong_extm.con (cic:/matita/lattice/latt_mcarr.con _)). +interpretation "Lattice le_to_eqm" 'le_to_eqm = (cic:/matita/lattice/le_to_eqm.con (cic:/matita/lattice/latt_mcarr.con _)). +interpretation "Lattice lem" 'lem = (cic:/matita/lattice/lem.con (cic:/matita/lattice/latt_mcarr.con _)). +interpretation "Lattice join" 'join = (cic:/matita/lattice/meet.con (cic:/matita/lattice/latt_jcarr.con _)). +interpretation "Lattice join_refl" 'join_refl = (cic:/matita/lattice/meet_refl.con (cic:/matita/lattice/latt_jcarr.con _)). +interpretation "Lattice join_comm" 'join_comm = (cic:/matita/lattice/meet_comm.con (cic:/matita/lattice/latt_jcarr.con _)). +interpretation "Lattice join_assoc" 'join_assoc = (cic:/matita/lattice/meet_assoc.con (cic:/matita/lattice/latt_jcarr.con _)). +interpretation "Lattice strong_extm" 'strong_extj = (cic:/matita/lattice/strong_extm.con (cic:/matita/lattice/latt_jcarr.con _)). +interpretation "Lattice le_to_eqj" 'le_to_eqj = (cic:/matita/lattice/le_to_eqm.con (cic:/matita/lattice/latt_jcarr.con _)). +interpretation "Lattice lej" 'lej = (cic:/matita/lattice/lem.con (cic:/matita/lattice/latt_jcarr.con _)). +notation "'feq_jl'" non associative with precedence 50 for @{'feq_jl}. +notation "'feq_jr'" non associative with precedence 50 for @{'feq_jr}. +interpretation "Lattice feq_jl" 'feq_jl = (cic:/matita/lattice/feq_ml.con (cic:/matita/lattice/latt_jcarr.con _)). +interpretation "Lattice feq_jr" 'feq_jr = (cic:/matita/lattice/feq_mr.con (cic:/matita/lattice/latt_jcarr.con _)). +notation "'feq_ml'" non associative with precedence 50 for @{'feq_ml}. +notation "'feq_mr'" non associative with precedence 50 for @{'feq_mr}. +interpretation "Lattice feq_ml" 'feq_ml = (cic:/matita/lattice/feq_ml.con (cic:/matita/lattice/latt_mcarr.con _)). +interpretation "Lattice feq_mr" 'feq_mr = (cic:/matita/lattice/feq_mr.con (cic:/matita/lattice/latt_mcarr.con _)).