X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;ds=sidebyside;f=helm%2Fsoftware%2Fmatita%2Flibrary%2Fdemo%2Fformal_topology.ma;h=6a3235445cedc0b9de46d2c94b1e2b0462a49eb4;hb=71b481a2c2c95d9f80ff49f828336098b3de3924;hp=50671aa41afa50e12f3c3ebfdc6e18e5424e21e5;hpb=d57b04c45c3dafa7b56a3dc2019c2ab0de730406;p=helm.git diff --git a/helm/software/matita/library/demo/formal_topology.ma b/helm/software/matita/library/demo/formal_topology.ma index 50671aa41..6a3235445 100644 --- a/helm/software/matita/library/demo/formal_topology.ma +++ b/helm/software/matita/library/demo/formal_topology.ma @@ -19,10 +19,8 @@ inductive And (A,B:CProp) : CProp ≝ interpretation "constructive and" 'and x y = (And x y). -inductive exT (A:Type) (P:A→CProp) : CProp ≝ - ex_introT: ∀w:A. P w → exT A P. - -interpretation "CProp exists" 'exists \eta.x = (exT _ x). +inductive exT2 (A:Type) (P,Q:A→CProp) : CProp ≝ + ex_introT2: ∀w:A. P w → Q w → exT2 A P Q. record powerset (A: Type) : Type ≝ { char: A → CProp }. @@ -44,16 +42,17 @@ record axiom_set : Type ≝ C: ∀a:A. i a → 2 \sup A }. +inductive for_all (A: axiom_set) (U,V: 2 \sup A) (covers: A → CProp) : CProp ≝ + iter: (∀a:A.a ∈ V → covers a) → for_all A U V covers. + inductive covers (A: axiom_set) (U: 2 \sup A) : A → CProp ≝ refl: ∀a:A. a ∈ U → covers A U a - | infinity: ∀a:A. ∀j: i ? a. coversl A U (C ? a j) → covers A U a -with coversl : (2 \sup A) → CProp ≝ - iter: ∀V:2 \sup A.(∀a:A.a ∈ V → covers A U a) → coversl A U V. + | infinity: ∀a:A. ∀j: i ? a. for_all A U (C ? a j) (covers A U) → covers A U a. notation "hvbox(a break ◃ b)" non associative with precedence 45 -for @{ 'covers $a $b }. +for @{ 'covers $a $b }. (* a \ltri b *) -interpretation "coversl" 'covers A U = (coversl _ U A). +interpretation "coversl" 'covers A U = (for_all _ U A (covers _ U)). interpretation "covers" 'covers a U = (covers _ U a). definition covers_elim ≝ @@ -63,40 +62,37 @@ definition covers_elim ≝ let rec aux (a:A) (p:a ◃ U) on p : a ∈ P ≝ match p return λaa.λ_:aa ◃ U.aa ∈ P with [ refl a q ⇒ H1 a q - | infinity a j q ⇒ H2 a j q (auxl (C ? a j) q) - ] - and auxl (V: 2 \sup A) (q: V ◃ U) on q : ∀b. b ∈ V → b ∈ P ≝ - match q return λVV.λ_:VV ◃ U.∀b. b ∈ VV → b ∈ P with - [ iter VV f ⇒ λb.λr. aux b (f b r) ] + | infinity a j q ⇒ + H2 a j q + match q return λ_:(C ? a j) ◃ U.∀b. b ∈ (C ? a j) → b ∈ P with + [ iter f ⇒ λb.λr. aux b (f b r) ]] in aux. +inductive ex_such (A : axiom_set) (U,V : 2 \sup A) (fish: A → CProp) : CProp ≝ + found : ∀a. a ∈ V → fish a → ex_such A U V fish. + coinductive fish (A:axiom_set) (U: 2 \sup A) : A → CProp ≝ - mk_fish: ∀a:A. (a ∈ U ∧ ∀j: i ? a. ∃y: A. y ∈ C ? a j ∧ fish A U y) → fish A U a. -definition fishl ≝ λA:axiom_set.λU:2 \sup A.λV:2 \sup A. ∃a. a ∈ V ∧ fish ? U a. + mk_fish: ∀a:A. a ∈ U → (∀j: i ? a. ex_such A U (C ? a j) (fish A U)) → fish A U a. notation "hvbox(a break ⋉ b)" non associative with precedence 45 -for @{ 'fish $a $b }. +for @{ 'fish $a $b }. (* a \ltimes b *) -interpretation "fishl" 'fish A U = (fishl _ U A). +interpretation "fishl" 'fish A U = (ex_such _ U A (fish _ U)). interpretation "fish" 'fish a U = (fish _ U a). let corec fish_rec (A:axiom_set) (U: 2 \sup A) (P: 2 \sup A) (H1: ∀a:A. a ∈ P → a ∈ U) - (H2: ∀a:A. a ∈ P → ∀j: i ? a. ∃y: A. y ∈ C ? a j ∧ y ∈ P) : + (H2: ∀a:A. a ∈ P → ∀j: i ? a. exT2 ? (λy.y ∈ C ? a j) (λy.y ∈ P)) : ∀a:A. ∀p: a ∈ P. a ⋉ U ≝ λa,p. mk_fish A U a - (conj ? ? (H1 ? p) + (H1 ? p) (λj: i ? a. match H2 a p j with - [ ex_introT (y: A) (Ha: y ∈ C ? a j ∧ y ∈ P) ⇒ - match Ha with - [ conj (fHa: y ∈ C ? a j) (sHa: y ∈ P) ⇒ - ex_introT A (λy.y ∈ C ? a j ∧ fish A U y) y - (conj ? ? fHa (fish_rec A U P H1 H2 y sHa)) - ] - ])). + [ ex_introT2 (y: A) (HyC : y ∈ C ? a j) (HyP : y ∈ P) ⇒ + found ???? y HyC (fish_rec A U P H1 H2 y HyP) + ]). theorem reflexivity: ∀A:axiom_set.∀a:A.∀V. a ∈ V → a ◃ V. intros; @@ -107,10 +103,7 @@ qed. theorem transitivity: ∀A:axiom_set.∀a:A.∀U,V. a ◃ U → U ◃ V → a ◃ V. intros; apply (covers_elim ?? (mk_powerset A (λa.a ◃ V)) ??? H); simplify; intros; - [ cases H1 in H2; - intro; - apply H2; - assumption + [ cases H1 in H2; apply H2; | apply infinity; [ assumption | constructor 1; @@ -120,7 +113,6 @@ qed. theorem coreflexivity: ∀A:axiom_set.∀a:A.∀V. a ⋉ V → a ∈ V. intros; cases H; - cases H1; assumption. qed. @@ -128,25 +120,19 @@ theorem cotransitivity: ∀A:axiom_set.∀a:A.∀U,V. a ⋉ U → (∀b:A. b ⋉ U → b ∈ V) → a ⋉ V. intros; apply (fish_rec ?? (mk_powerset A (λa.a ⋉ U)) ??? H); simplify; intros; - [ apply H1; - assumption - | cases H2 in j; clear H2; cases H3; clear H3; - assumption] + [ apply H1; apply H2; + | cases H2 in j; clear H2; intro i; + cases (H4 i); clear H4; exists[apply a3] assumption] qed. theorem compatibility: ∀A:axiom_set.∀a:A.∀U,V. a ⋉ V → a ◃ U → U ⋉ V. intros; - generalize in match H; clear H; generalize in match V; clear V; - apply (covers_elim ?? (mk_powerset A (λa.∀p:2 \sup A.a ⋉ p → U ⋉ p)) ??? H1); + generalize in match H; clear H; + apply (covers_elim ?? (mk_powerset A (λa.a ⋉ V → U ⋉ V)) ??? H1); clear H1; simplify; intros; - [ exists [apply a1] - split; - assumption - | cases H2 in j H H1; clear H2 a1; intros; - cases H; clear H; - cases (H4 i); clear H4; cases H; clear H; - apply (H2 w); clear H2; - assumption] + [ exists [apply a1] assumption + | cases H2 in j H H1; clear H2 a1; intros; + cases (H1 i); clear H1; apply (H3 a1); assumption] qed. definition singleton ≝ λA:axiom_set.λa:A.mk_powerset ? (λb:A.a=b). @@ -183,7 +169,7 @@ notation "↑a" with precedence 80 for @{ 'uparrow $a }. interpretation "uparrow" 'uparrow a = (uparrow _ a). -definition overlaps ≝ λA:Type.λU,V:2 \sup A.∃a:A. a ∈ U ∧ a ∈ V. +definition overlaps ≝ λA:Type.λU,V:2 \sup A.exT2 ? (λa:A. a ∈ U) (λa.a ∈ V). notation "hvbox(a break ≬ b)" non associative with precedence 45 for @{ 'overlaps $a $b }.