X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;ds=sidebyside;f=helm%2Fsoftware%2Fmatita%2Fnlibrary%2FPTS%2Fsubst.ma;h=a37074b4d306a60b85f7909bcecc2637b7849d82;hb=471987d6759c57e40fb89d435345cf654dc4aa39;hp=7ca2fdc03f059c0df5b292fdc3f204567f9e3143;hpb=34a5ef53f3ad2771cb45f90a2da6713bccdf3608;p=helm.git diff --git a/helm/software/matita/nlibrary/PTS/subst.ma b/helm/software/matita/nlibrary/PTS/subst.ma index 7ca2fdc03..a37074b4d 100644 --- a/helm/software/matita/nlibrary/PTS/subst.ma +++ b/helm/software/matita/nlibrary/PTS/subst.ma @@ -22,61 +22,64 @@ ninductive T : Type ≝ | Prod: T → T → T (* type, body *) . -nlet rec lift_aux t k p ≝ +nlet rec lift t k p ≝ match t with [ Sort n ⇒ Sort n | Rel n ⇒ if_then_else T (leb (S n) k) (Rel n) (Rel (n+p)) - | App m n ⇒ App (lift_aux m k p) (lift_aux n k p) - | Lambda m n ⇒ Lambda (lift_aux m k p) (lift_aux n (k+1) p) - | Prod m n ⇒ Prod (lift_aux m k p) (lift_aux n (k+1) p) + | App m n ⇒ App (lift m k p) (lift n k p) + | Lambda m n ⇒ Lambda (lift m k p) (lift n (k+1) p) + | Prod m n ⇒ Prod (lift m k p) (lift n (k+1) p) ]. -ndefinition lift ≝ λt.λp.lift_aux t 0 p. +(* +ndefinition lift ≝ λt.λp.lift_aux t 0 p.*) -notation "↑ \sup n ( M )" non associative with precedence 70 for @{'Lift $n $M}. -notation "↑ \sub k \sup n ( M )" non associative with precedence 70 for @{'Lift_aux $n $k $M}. +notation "↑ \sup n ( M )" non associative with precedence 70 for @{'Lift O $M}. +notation "↑ \sub k \sup n ( M )" non associative with precedence 70 for @{'Lift $n $k $M}. -interpretation "Lift" 'Lift n M = (lift M n). -interpretation "Lift_aux" 'Lift_aux n k M = (lift_aux M k n). +(* interpretation "Lift" 'Lift n M = (lift M n). *) +interpretation "Lift" 'Lift n k M = (lift M k n). -nlet rec subst_aux t k a ≝ +nlet rec subst t k a ≝ match t with [ Sort n ⇒ Sort n | Rel n ⇒ if_then_else T (leb (S n) k) (Rel n) - (if_then_else T (eqb n k) (lift a n) (Rel (n-1))) - | App m n ⇒ App (subst_aux m k a) (subst_aux n k a) - | Lambda m n ⇒ Lambda (subst_aux m k a) (subst_aux n (k+1) a) - | Prod m n ⇒ Prod (subst_aux m k a) (subst_aux n (k+1) a) + (if_then_else T (eqb n k) (lift a 0 n) (Rel (n-1))) + | App m n ⇒ App (subst m k a) (subst n k a) + | Lambda m n ⇒ Lambda (subst m k a) (subst n (k+1) a) + | Prod m n ⇒ Prod (subst m k a) (subst n (k+1) a) ]. +(* meglio non definire ndefinition subst ≝ λa.λt.subst_aux t 0 a. - notation "M [ N ]" non associative with precedence 90 for @{'Subst $N $M}. -notation "M [ k ← N]" non associative with precedence 90 for @{'Subst_aux $M $k $N}. +*) + +notation "M [ k ← N]" non associative with precedence 90 for @{'Subst $M $k $N}. -interpretation "Subst" 'Subst N M = (subst N M). -interpretation "Subst_aux" 'Subst_aux M k N = (subst_aux M k N). +(* interpretation "Subst" 'Subst N M = (subst N M). *) +interpretation "Subst" 'Subst M k N = (subst M k N). (*** properties of lift and subst ***) -nlemma lift_aux_0: ∀t:T.∀k. lift_aux t k 0 = t. +nlemma lift_0: ∀t:T.∀k. lift t k 0 = t. #t; nelim t; nnormalize; //; #n; #k; ncases (leb (S n) k); nnormalize;//;nqed. -nlemma lift_0: ∀t:T. lift t 0 = t. -#t; nelim t; nnormalize; //; nqed. +(* nlemma lift_0: ∀t:T. lift t 0 = t. +#t; nelim t; nnormalize; //; nqed. *) -nlemma lift_sort: ∀i,k. lift (Sort i) k = Sort i. +nlemma lift_sort: ∀i,k,n. lift (Sort i) k n = Sort i. //; nqed. -nlemma lift_rel: ∀i,k. lift (Rel i) k = Rel (i+k). +nlemma lift_rel: ∀i,n. lift (Rel i) 0 n = Rel (i+n). //; nqed. -nlemma lift_rel1: ∀i.lift (Rel i) 1 = Rel (S i). -#i; nchange with (lift (Rel i) 1 = Rel (1 + i)); //; nqed. +nlemma lift_rel1: ∀i.lift (Rel i) 0 1 = Rel (S i). +#i; nchange with (lift (Rel i) 0 1 = Rel (1 + i)); //; nqed. -nlemma lift_lift_aux: ∀t.∀i,j.j ≤ i → ∀h,k. -lift_aux (lift_aux t k i) (j+k) h = lift_aux t k (i+h). +nlemma lift_lift: ∀t.∀i,j.j ≤ i → ∀h,k. + lift (lift t k i) (j+k) h = lift t k (i+h). #t; #i; #j; #h; nelim t; nnormalize; //; #n; #h;#k; napply (leb_elim (S n) k); #Hnk;nnormalize; ##[nrewrite > (le_to_leb_true (S n) (j+k) ?);nnormalize;/2/; @@ -86,17 +89,19 @@ napply (leb_elim (S n) k); #Hnk;nnormalize; ##] nqed. -nlemma lift_lift_aux1: ∀t.∀i,j,k. lift_aux (lift_aux t k j) k i = lift_aux t k (j+i). +nlemma lift_lift1: ∀t.∀i,j,k. + lift(lift t k j) k i = lift t k (j+i). #t;/3/; nqed. -nlemma lift_lift_aux2: ∀t.∀i,j,k. lift_aux (lift_aux t k j) (j+k) i = lift_aux t k (j+i). +nlemma lift_lift2: ∀t.∀i,j,k. + lift (lift t k j) (j+k) i = lift t k (j+i). #t; /2/; nqed. +(* nlemma lift_lift: ∀t.∀i,j. lift (lift t j) i = lift t (j+i). -nnormalize; //; nqed. +nnormalize; //; nqed. *) -nlemma subst_lift_aux_k: ∀A,B.∀k. - subst_aux (lift_aux B k 1) k A = B. +nlemma subst_lift_k: ∀A,B.∀k. subst (lift B k 1) k A = B. #A; #B; nelim B; nnormalize; /2/; #n; #k; napply (leb_elim (S n) k); nnormalize; #Hnk; ##[nrewrite > (le_to_leb_true ?? Hnk);nnormalize;//; @@ -108,39 +113,38 @@ napply (leb_elim (S n) k); nnormalize; #Hnk; ##] nqed. +(* nlemma subst_lift: ∀A,B. subst A (lift B 1) = B. -nnormalize; //; nqed. - -nlemma subst_aux_sort: ∀A.∀n,k. subst_aux (Sort n) k A = Sort n. -//; nqed. +nnormalize; //; nqed. *) -nlemma subst_sort: ∀A.∀n. subst A (Sort n) = Sort n. +nlemma subst_sort: ∀A.∀n,k. subst (Sort n) k A = Sort n. //; nqed. -nlemma subst_rel: ∀A.subst A (Rel O) = A. +nlemma subst_rel: ∀A.subst (Rel 0) 0 A = A. nnormalize; //; nqed. nlemma subst_rel1: ∀A.∀k,i. i < k → - subst_aux (Rel i) k A = Rel i. + subst (Rel i) k A = Rel i. #A; #k; #i; nnormalize; #ltik; nrewrite > (le_to_leb_true (S i) k ?); //; nqed. -nlemma subst_rel2: ∀A.∀k. subst_aux (Rel k) k A = lift A k. +nlemma subst_rel2: ∀A.∀k. + subst (Rel k) k A = lift A 0 k. #A; #k; nnormalize; nrewrite > (lt_to_leb_false (S k) k ?); //; nrewrite > (eq_to_eqb_true … (refl …)); //; nqed. nlemma subst_rel3: ∀A.∀k,i. k < i → - subst_aux (Rel i) k A = Rel (i-1). + subst (Rel i) k A = Rel (i-1). #A; #k; #i; nnormalize; #ltik; nrewrite > (lt_to_leb_false (S i) k ?); /2/; nrewrite > (not_eq_to_eqb_false i k ?); //; napply nmk; #eqik; nelim (lt_to_not_eq … (ltik …)); /2/; nqed. -nlemma lift_subst_aux_ijk: ∀A,B.∀i,j,k. - lift_aux (subst_aux B (j+k) A) k i = subst_aux (lift_aux B k i) (j+k+i) A. +nlemma lift_subst_ijk: ∀A,B.∀i,j,k. + lift (subst B (j+k) A) k i = subst (lift B k i) (j+k+i) A. #A; #B; #i; #j; nelim B; nnormalize; /2/; #n; #k; napply (leb_elim (S n) (j + k)); nnormalize; #Hnjk; ##[nelim (leb (S n) k); @@ -151,7 +155,7 @@ napply (leb_elim (S n) (j + k)); nnormalize; #Hnjk; ##[nrewrite > (lt_to_leb_false (S n) k ?); ##[ncut (j+k+i = n+i);##[//;##] #Heq; nrewrite > Heq; nrewrite > (subst_rel2 A ?); - nnormalize; napplyS lift_lift_aux;//; + nnormalize; napplyS lift_lift;//; ##|/2/; ##] ##|ncut (j + k < n); @@ -171,7 +175,7 @@ napply (leb_elim (S n) (j + k)); nnormalize; #Hnjk; nqed. ntheorem delift : ∀A,B.∀i,j,k. i ≤ j → j ≤ i + k → - subst_aux (lift_aux B i (S k)) j A = (lift_aux B i k). + subst (lift B i (S k)) j A = (lift B i k). #A; #B; nelim B; nnormalize; /2/; ##[##2,3,4: #T; #T0; #Hind1; #Hind2; #i; #j; #k; #leij; #lejk; napply eq_f2;/2/; napply Hind2; @@ -194,8 +198,8 @@ nqed. (********************* substitution lemma ***********************) nlemma subst_lemma: ∀A,B,C.∀k,i. - subst_aux (subst_aux A i B) (k+i) C = - subst_aux (subst_aux A (S (k+i)) C) i (subst_aux B k C). + subst (subst A i B) (k+i) C = + subst (subst A (S (k+i)) C) i (subst B k C). #A; #B; #C; #k; nelim A; nnormalize;//; (* WOW *) #n; #i; napply (leb_elim (S n) i); #Hle; ##[ncut (n < k+i); ##[/2/##] #ltn; (* lento *) @@ -208,7 +212,7 @@ nlemma subst_lemma: ∀A,B,C.∀k,i. nrewrite > (le_to_leb_true i (k+i) ?); //; nrewrite > (subst_rel2 …); nnormalize; napply symmetric_eq; - napplyS (lift_subst_aux_ijk C B i k O); + napplyS (lift_subst_ijk C B i k O); ##|napply (leb_elim (S (n-1)) (k+i)); #nk; ##[nrewrite > (subst_rel1 C (k+i) (n-1) nk); nrewrite > (le_to_leb_true n (k+i) ?);