X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;ds=sidebyside;f=helm%2Fsoftware%2Fmatita%2Fnlibrary%2Farithmetics%2Fnat.ma;h=3152b0dbe3503aeee43bbd0f872b847f87979239;hb=eb4144a401147a44a9620169eb6dafeb8f5a2c17;hp=8efe32043339fc033900d6495826b2b96d6d17fe;hpb=a356482acf3bf92eaa34d2b38ee2e81761f58520;p=helm.git diff --git a/helm/software/matita/nlibrary/arithmetics/nat.ma b/helm/software/matita/nlibrary/arithmetics/nat.ma index 8efe32043..3152b0dbe 100644 --- a/helm/software/matita/nlibrary/arithmetics/nat.ma +++ b/helm/software/matita/nlibrary/arithmetics/nat.ma @@ -262,41 +262,91 @@ ntheorem le_pred_n : ∀n:nat. pred n ≤ n. ntheorem monotonic_pred: monotonic ? le pred. #n; #m; #lenm; nelim lenm; /2/; nqed. -ntheorem le_S_S_to_le : ∀n,m:nat. S n ≤ S m → n ≤ m. +ntheorem le_S_S_to_le: ∀n,m:nat. S n ≤ S m → n ≤ m. /2/; nqed. -(* -nchange with (pred (S n) ≤ pred (S m)); -nelim leSS; apply le_n.apply (trans_le ? (pred n1)).assumption. -apply le_pred_n. -qed. +ntheorem lt_S_S_to_lt: ∀n,m. S n < S m \to n < m. +/2/; nqed. -theorem lt_S_S_to_lt: \forall n,m. - S n < S m \to n < m. -intros. apply le_S_S_to_le. assumption. -qed. +ntheorem lt_to_lt_S_S: ∀n,m. n < m → S n < S m. +/2/; nqed. -theorem lt_to_lt_S_S: ∀n,m. n < m → S n < S m. -intros; -unfold lt in H; -apply (le_S_S ? ? H). -qed. +ntheorem lt_to_not_zero : ∀n,m:nat. n < m → not_zero m. +#n; #m; #Hlt; nelim Hlt;//; nqed. -theorem leS_to_not_zero : \forall n,m:nat. S n \leq m \to not_zero m. -intros.elim H.exact I.exact I. -qed. +(* lt vs. le *) +ntheorem not_le_Sn_O: ∀ n:nat. S n ≰ O. +#n; #Hlen0; napply (lt_to_not_zero ?? Hlen0); nqed. -(* not le *) -theorem not_le_Sn_O: \forall n:nat. S n \nleq O. -intros.unfold Not.simplify.intros.apply (leS_to_not_zero ? ? H). -qed. +ntheorem not_le_to_not_le_S_S: ∀ n,m:nat. n ≰ m → S n ≰ S m. +/3/; nqed. -theorem not_le_Sn_n: \forall n:nat. S n \nleq n. -intros.elim n.apply not_le_Sn_O.unfold Not.simplify.intros.cut (S n1 \leq n1). -apply H.assumption. -apply le_S_S_to_le.assumption. -qed. +ntheorem not_le_S_S_to_not_le: ∀ n,m:nat. S n ≰ S m → n ≰ m. +/3/; nqed. + +ntheorem decidable_le: ∀n,m. decidable (n≤m). +napply nat_elim2; #n; /2/; +#m; #dec; ncases dec;/3/; nqed. + +ntheorem decidable_lt: ∀n,m. decidable (n < m). +#n; #m; napply decidable_le ; nqed. + +ntheorem not_le_Sn_n: ∀n:nat. S n ≰ n. +#n; nelim n; /2/; nqed. + +ntheorem lt_S_to_le: ∀n,m:nat. n < S m → n ≤ m. +/2/; nqed. + +ntheorem not_le_to_lt: ∀n,m. n ≰ m → m < n. +napply nat_elim2; #n; + ##[#abs; napply False_ind;/2/; + ##|/2/; + ##|#m;#Hind;#HnotleSS; napply lt_to_lt_S_S;/3/; + ##] +nqed. + +ntheorem lt_to_not_le: ∀n,m. n < m → m ≰ n. +#n; #m; #Hltnm; nelim Hltnm;/3/; nqed. + +ntheorem not_lt_to_le: ∀n,m:nat. n ≮ m → m ≤ n. +#n; #m; #Hnlt; napply lt_S_to_le; +(* something strange here: /2/ fails: + we need an extra depths for unfolding not *) +napply not_le_to_lt; napply Hnlt; nqed. + +ntheorem le_to_not_lt: ∀n,m:nat. n ≤ m → m ≮ n. +/2/; nqed. + +(* lt and le trans *) + +ntheorem lt_to_le_to_lt: ∀n,m,p:nat. n < m → m ≤ p → n < p. +#n; #m; #p; #H; #H1; nelim H1; /2/; nqed. +ntheorem le_to_lt_to_lt: ∀n,m,p:nat. n ≤ m → m < p → n < p. +#n; #m; #p; #H; nelim H; /3/; nqed. + +ntheorem lt_S_to_lt: ∀n,m. S n < m → n < m. +/2/; nqed. + +ntheorem ltn_to_ltO: ∀n,m:nat. n < m → O < m. +/2/; nqed. + +(* +theorem lt_SO_n_to_lt_O_pred_n: \forall n:nat. +(S O) \lt n \to O \lt (pred n). +intros. +apply (ltn_to_ltO (pred (S O)) (pred n) ?). + apply (lt_pred (S O) n); + [ apply (lt_O_S O) + | assumption + ] +qed. *) + +ntheorem lt_O_n_elim: ∀n:nat. O < n → + ∀P:nat → Prop.(∀m:nat.P (S m)) → P n. +#n; nelim n; //; #abs; napply False_ind; /2/; nqed. + +(* theorem lt_pred: \forall n,m. O < n \to n < m \to pred n < pred m. apply nat_elim2 @@ -325,48 +375,18 @@ elim n; ]. qed. -theorem le_to_le_pred: - ∀n,m. n ≤ m → pred n ≤ pred m. -intros 2; -elim n; -[ simplify; - apply le_O_n -| simplify; - elim m in H1 ⊢ %; - [ elim (not_le_Sn_O ? H1) - | simplify; - apply le_S_S_to_le; - assumption - ] -]. -qed. +*) (* le to lt or eq *) -theorem le_to_or_lt_eq : \forall n,m:nat. -n \leq m \to n < m \lor n = m. -intros.elim H. -right.reflexivity. -left.unfold lt.apply le_S_S.assumption. -qed. - -theorem Not_lt_n_n: ∀n. n ≮ n. -intro; -unfold Not; -intro; -unfold lt in H; -apply (not_le_Sn_n ? H). -qed. +ntheorem le_to_or_lt_eq: ∀n,m:nat. n ≤ m → n < m ∨ n = m. +#n; #m; #lenm; nelim lenm; /3/; nqed. (* not eq *) -theorem lt_to_not_eq : \forall n,m:nat. n minus_Sn_m. +apply le_S.assumption. +apply lt_to_le.assumption. +qed. + +theorem minus_le_S_minus_S: \forall n,m:nat. m-n \leq S (m-(S n)). +intros. +apply (nat_elim2 (\lambda n,m.m-n \leq S (m-(S n)))). +intro.elim n1.simplify.apply le_n_Sn. +simplify.rewrite < minus_n_O.apply le_n. +intros.simplify.apply le_n_Sn. +intros.simplify.apply H. +qed. + +theorem lt_minus_S_n_to_le_minus_n : \forall n,m,p:nat. m-(S n) < p \to m-n \leq p. +intros 3.intro. +(* autobatch *) +(* end auto($Revision: 9739 $) proof: TIME=1.33 SIZE=100 DEPTH=100 *) +apply (trans_le (m-n) (S (m-(S n))) p). +apply minus_le_S_minus_S. +assumption. +qed. + +theorem le_minus_m: \forall n,m:nat. n-m \leq n. +intros.apply (nat_elim2 (\lambda m,n. n-m \leq n)). +intros.rewrite < minus_n_O.apply le_n. +intros.simplify.apply le_n. +intros.simplify.apply le_S.assumption. +qed. + +theorem lt_minus_m: \forall n,m:nat. O < n \to O < m \to n-m \lt n. +intros.apply (lt_O_n_elim n H).intro. +apply (lt_O_n_elim m H1).intro. +simplify.unfold lt.apply le_S_S.apply le_minus_m. +qed. + +theorem minus_le_O_to_le: \forall n,m:nat. n-m \leq O \to n \leq m. +intros 2. +apply (nat_elim2 (\lambda n,m:nat.n-m \leq O \to n \leq m)). +intros.apply le_O_n. +simplify.intros. assumption. +simplify.intros.apply le_S_S.apply H.assumption. +qed. +*) + +(* monotonicity and galois *) + +ntheorem monotonic_le_minus_l: +∀p,q,n:nat. q ≤ p → q-n ≤ p-n. +napply nat_elim2; #p; #q; + ##[#lePO; napply (le_n_O_elim ? lePO);//; + ##|//; + ##|#Hind; #n; ncases n; + ##[//; + ##|#a; #leSS; napply Hind; /2/; + ##] + ##] +nqed. + +ntheorem le_minus_to_plus: ∀n,m,p. n-m ≤ p → n≤ p+m. +#n; #m; #p; #lep; +napply transitive_le; + ##[##|napply le_plus_minus_m_m + ##|napply monotonic_le_plus_l;//; + ##] +nqed. + +ntheorem le_plus_to_minus: ∀n,m,p. n ≤ p+m → n-m ≤ p. +#n; #m; #p; #lep; +(* bello *) +napplyS monotonic_le_minus_l;//; +nqed. + +ntheorem monotonic_le_minus_r: +∀p,q,n:nat. q ≤ p → n-p ≤ n-q. +#p; #q; #n; #lepq; +napply le_plus_to_minus; +napply (transitive_le ??? (le_plus_minus_m_m ? q));/2/; +nqed.