X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;ds=sidebyside;f=helm%2Fsoftware%2Fmatita%2Fnlibrary%2Fsets%2Fsets.ma;h=aae969ed208f25ba2eab0cd1b3efa4cc78217372;hb=4b940bfbeab1181dd18c56e46761f5e6690d9f9d;hp=544db6a562bb4cd266d38082ace2ac0dc6197fc0;hpb=fd6a295e279aa5cc6b8eda610e25f3fbdb2f8d43;p=helm.git diff --git a/helm/software/matita/nlibrary/sets/sets.ma b/helm/software/matita/nlibrary/sets/sets.ma index 544db6a56..aae969ed2 100644 --- a/helm/software/matita/nlibrary/sets/sets.ma +++ b/helm/software/matita/nlibrary/sets/sets.ma @@ -34,6 +34,10 @@ interpretation "intersect" 'intersects U V = (intersect ? U V). ndefinition union ≝ λA.λU,V:Ω^A.{ x | x ∈ U ∨ x ∈ V }. interpretation "union" 'union U V = (union ? U V). +ndefinition substract ≝ λA.λU,V:Ω^A.{ x | x ∈ U ∧ ¬ x ∈ V }. +interpretation "substract" 'minus U V = (substract ? U V). + + ndefinition big_union ≝ λA,B.λT:Ω^A.λf:A → Ω^B.{ x | ∃i. i ∈ T ∧ x ∈ f i }. ndefinition big_intersection ≝ λA,B.λT:Ω^A.λf:A → Ω^B.{ x | ∀i. i ∈ T → x ∈ f i }. @@ -55,6 +59,9 @@ nqed. include "sets/setoids1.ma". +ndefinition singleton ≝ λA:setoid.λa:A.{ x | a = x }. +interpretation "singl" 'singl a = (singleton ? a). + (* this has to be declared here, so that it is combined with carr *) ncoercion full_set : ∀A:Type[0]. Ω^A ≝ full_set on A: Type[0] to (Ω^?). @@ -62,8 +69,6 @@ ndefinition powerclass_setoid: Type[0] → setoid1. #A; @(Ω^A);//. nqed. -include "hints_declaration.ma". - alias symbol "hint_decl" = "hint_decl_Type2". unification hint 0 ≔ A; R ≟ (mk_setoid1 (Ω^A) (eq1 (powerclass_setoid A))) @@ -108,10 +113,10 @@ unification hint 0 ≔ A; carr1 R ≡ ext_powerclass A. nlemma mem_ext_powerclass_setoid_is_morph: - ∀A. (setoid1_of_setoid A) ⇒_1 (unary_morphism1_setoid1 (ext_powerclass_setoid A) CPROP). - #A; napply (mk_binary_morphism1 … (λx:setoid1_of_setoid A.λS: 𝛀^A. x ∈ S)); - #a; #a'; #b; #b'; #Ha; *; #Hb1; #Hb2; @; #H - [ napply (. (ext_prop … Ha^-1)) | napply (. (ext_prop … Ha)) ] /2/. + ∀A. (setoid1_of_setoid A) ⇒_1 ((𝛀^A) ⇒_1 CPROP). +#A; napply (mk_binary_morphism1 … (λx:setoid1_of_setoid A.λS: 𝛀^A. x ∈ S)); +#a; #a'; #b; #b'; #Ha; *; #Hb1; #Hb2; @; #H +[ napply (. (ext_prop … Ha^-1)) | napply (. (ext_prop … Ha)) ] /2/. nqed. unification hint 0 ≔ AA, x, S; @@ -135,20 +140,12 @@ nlemma set_ext : ∀S.∀A,B:Ω^S.A =_1 B → ∀x:S.(x ∈ A) =_1 (x ∈ B). nlemma ext_set : ∀S.∀A,B:Ω^S.(∀x:S. (x ∈ A) = (x ∈ B)) → A = B. #S A B H; @; #x; ncases (H x); #H1 H2; ##[ napply H1 | napply H2] nqed. -nlemma subseteq_is_morph: ∀A. - (ext_powerclass_setoid A) ⇒_1 - (unary_morphism1_setoid1 (ext_powerclass_setoid A) CPROP). +nlemma subseteq_is_morph: ∀A. 𝛀^A ⇒_1 𝛀^A ⇒_1 CPROP. #A; napply (mk_binary_morphism1 … (λS,S':𝛀^A. S ⊆ S')); #a; #a'; #b; #b'; *; #H1; #H2; *; /5/ by mk_iff, sym1, subseteq_trans; nqed. -alias symbol "hint_decl" (instance 1) = "hint_decl_Type2". -unification hint 0 ≔ A,x,y -(*-----------------------------------------------*) ⊢ - eq_rel ? (eq0 A) x y ≡ eq_rel1 ? (eq1 (setoid1_of_setoid A)) x y. - -(* XXX capire come mai questa hint non funziona se porto su (setoid1_of_setoid A) *) - +(* hints for ∩ *) nlemma intersect_is_ext: ∀A. 𝛀^A → 𝛀^A → 𝛀^A. #S A B; @ (A ∩ B); #x y Exy; @; *; #H1 H2; @; ##[##1,2: napply (. Exy^-1‡#); nassumption; @@ -161,11 +158,10 @@ unification hint 0 ≔ R ≟ (mk_ext_powerclass ? (B ∩ C) (ext_prop ? (intersect_is_ext ? B C))) (* ------------------------------------------*) ⊢ ext_carr A R ≡ intersect ? (ext_carr ? B) (ext_carr ? C). - -nlemma intersect_is_morph: - ∀A. (powerclass_setoid A) ⇒_1 (unary_morphism1_setoid1 (powerclass_setoid A) (powerclass_setoid A)). - #A; napply (mk_binary_morphism1 … (λS,S'. S ∩ S')); - #a; #a'; #b; #b'; *; #Ha1; #Ha2; *; #Hb1; #Hb2; @; #x; nnormalize; *;/3/. + +nlemma intersect_is_morph: ∀A. Ω^A ⇒_1 Ω^A ⇒_1 Ω^A. +#A; napply (mk_binary_morphism1 … (λS,S'. S ∩ S')); +#a; #a'; #b; #b'; *; #Ha1; #Ha2; *; #Hb1; #Hb2; @; #x; nnormalize; *;/3/. nqed. alias symbol "hint_decl" = "hint_decl_Type1". @@ -180,10 +176,7 @@ interpretation "prop21 ext" 'prop2 l r = (prop11 (ext_powerclass_setoid ?) (unary_morphism1_setoid1 (ext_powerclass_setoid ?) ?) ? ?? l ?? r). -nlemma intersect_is_ext_morph: - ∀A. - (ext_powerclass_setoid A) ⇒_1 - (unary_morphism1_setoid1 (ext_powerclass_setoid A) (ext_powerclass_setoid A)). +nlemma intersect_is_ext_morph: ∀A. 𝛀^A ⇒_1 𝛀^A ⇒_1 𝛀^A. #A; napply (mk_binary_morphism1 … (intersect_is_ext …)); #a; #a'; #b; #b'; #Ha; #Hb; napply (prop11 … (intersect_is_morph A)); nassumption. nqed. @@ -203,9 +196,9 @@ unification hint 1 ≔ (* ------------------------------------------------------*) ⊢ ext_carr AA (R B C) ≡ intersect A BB CC. -nlemma union_is_morph : - ∀A. (powerclass_setoid A) ⇒_1 (unary_morphism1_setoid1 (powerclass_setoid A) (powerclass_setoid A)). -(*XXX ∀A.Ω^A ⇒_1 (Ω^A ⇒_1 Ω^A). avec non-unif-coerc*) + +(* hints for ∩ *) +nlemma union_is_morph : ∀A. Ω^A ⇒_1 (Ω^A ⇒_1 Ω^A). #X; napply (mk_binary_morphism1 … (λA,B.A ∪ B)); #A1 A2 B1 B2 EA EB; napply ext_set; #x; nchange in match (x ∈ (A1 ∪ B1)) with (?∨?); @@ -235,10 +228,7 @@ unification hint 0 ≔ S:Type[0], A,B:Ω^S; (*--------------------------------------------------------------------------*) ⊢ fun11 ?? (fun11 ?? MM A) B ≡ A ∪ B. -nlemma union_is_ext_morph:∀A. - (ext_powerclass_setoid A) ⇒_1 - (unary_morphism1_setoid1 (ext_powerclass_setoid A) (ext_powerclass_setoid A)). -(*XXX ∀A:setoid.𝛀^A ⇒_1 (𝛀^A ⇒_1 𝛀^A). with coercion non uniformi *) +nlemma union_is_ext_morph:∀A.𝛀^A ⇒_1 𝛀^A ⇒_1 𝛀^A. #A; napply (mk_binary_morphism1 … (union_is_ext …)); #x1 x2 y1 y2 Ex Ey; napply (prop11 … (union_is_morph A)); nassumption. nqed. @@ -258,6 +248,92 @@ unification hint 1 ≔ (*------------------------------------------------------*) ⊢ ext_carr AA (R B C) ≡ union A BB CC. + +(* hints for - *) +nlemma substract_is_morph : ∀A. Ω^A ⇒_1 (Ω^A ⇒_1 Ω^A). +#X; napply (mk_binary_morphism1 … (λA,B.A - B)); +#A1 A2 B1 B2 EA EB; napply ext_set; #x; +nchange in match (x ∈ (A1 - B1)) with (?∧?); +napply (.= (set_ext ??? EA x)‡#); @; *; #H H1; @; //; #H2; napply H1; +##[ napply (. (set_ext ??? EB x)); ##| napply (. (set_ext ??? EB^-1 x)); ##] //; +nqed. + +nlemma substract_is_ext: ∀A. 𝛀^A → 𝛀^A → 𝛀^A. + #S A B; @ (A - B); #x y Exy; @; *; #H1 H2; @; ##[##2,4: #H3; napply H2] +##[##1,4: napply (. Exy╪_1#); // ##|##2,3: napply (. Exy^-1╪_1#); //] +nqed. + +alias symbol "hint_decl" = "hint_decl_Type1". +unification hint 0 ≔ + A : setoid, B,C : 𝛀^A; + R ≟ (mk_ext_powerclass ? (B - C) (ext_prop ? (substract_is_ext ? B C))) +(*-------------------------------------------------------------------------*) ⊢ + ext_carr A R ≡ substract ? (ext_carr ? B) (ext_carr ? C). + +unification hint 0 ≔ S:Type[0], A,B:Ω^S; + MM ≟ mk_unary_morphism1 ?? + (λA.mk_unary_morphism1 ?? (λB.A - B) (prop11 ?? (substract_is_morph S A))) + (prop11 ?? (substract_is_morph S)) +(*--------------------------------------------------------------------------*) ⊢ + fun11 ?? (fun11 ?? MM A) B ≡ A - B. + +nlemma substract_is_ext_morph:∀A.𝛀^A ⇒_1 𝛀^A ⇒_1 𝛀^A. +#A; napply (mk_binary_morphism1 … (substract_is_ext …)); +#x1 x2 y1 y2 Ex Ey; napply (prop11 … (substract_is_morph A)); nassumption. +nqed. + +unification hint 1 ≔ + AA : setoid, B,C : 𝛀^AA; + A ≟ carr AA, + R ≟ (mk_unary_morphism1 ?? + (λS:𝛀^AA. + mk_unary_morphism1 ?? + (λS':𝛀^AA. + mk_ext_powerclass AA (S - S') (ext_prop AA (substract_is_ext ? S S'))) + (prop11 ?? (substract_is_ext_morph AA S))) + (prop11 ?? (substract_is_ext_morph AA))) , + BB ≟ (ext_carr ? B), + CC ≟ (ext_carr ? C) +(*------------------------------------------------------*) ⊢ + ext_carr AA (R B C) ≡ substract A BB CC. + +(* hints for {x} *) +nlemma single_is_morph : ∀A:setoid. (setoid1_of_setoid A) ⇒_1 Ω^A. +#X; @; ##[ napply (λx.{(x)}); ##] +#a b E; napply ext_set; #x; @; #H; /3/; nqed. + +nlemma single_is_ext: ∀A:setoid. A → 𝛀^A. +#X a; @; ##[ napply ({(a)}); ##] #x y E; @; #H; /3/; nqed. + +alias symbol "hint_decl" = "hint_decl_Type1". +unification hint 0 ≔ A : setoid, a:A; + R ≟ (mk_ext_powerclass ? {(a)} (ext_prop ? (single_is_ext ? a))) +(*-------------------------------------------------------------------------*) ⊢ + ext_carr A R ≡ singleton A a. + +unification hint 0 ≔ A:setoid, a:A; + MM ≟ mk_unary_morphism1 ?? + (λa:setoid1_of_setoid A.{(a)}) (prop11 ?? (single_is_morph A)) +(*--------------------------------------------------------------------------*) ⊢ + fun11 ?? MM a ≡ {(a)}. + +nlemma single_is_ext_morph:∀A:setoid.(setoid1_of_setoid A) ⇒_1 𝛀^A. +#A; @; ##[ #a; napply (single_is_ext ? a); ##] #a b E; @; #x; /3/; nqed. + +unification hint 1 ≔ + AA : setoid, a: AA; + R ≟ mk_unary_morphism1 ?? + (λa:setoid1_of_setoid AA. + mk_ext_powerclass AA {(a)} (ext_prop ? (single_is_ext AA a))) + (prop11 ?? (single_is_ext_morph AA)) +(*------------------------------------------------------*) ⊢ + ext_carr AA (R a) ≡ singleton AA a. + + + + + + (* alias symbol "hint_decl" = "hint_decl_Type2". unification hint 0 ≔ @@ -386,16 +462,6 @@ nrecord isomorphism (A, B : setoid) (S: ext_powerclass A) (T: ext_powerclass B) f_inj: injective … S iso_f }. -nlemma subseteq_intersection_l: ∀A.∀U,V,W:Ω^A.U ⊆ W ∨ V ⊆ W → U ∩ V ⊆ W. -#A; #U; #V; #W; *; #H; #x; *; /2/. -nqed. - -nlemma subseteq_union_l: ∀A.∀U,V,W:Ω^A.U ⊆ W → V ⊆ W → U ∪ V ⊆ W. -#A; #U; #V; #W; #H; #H1; #x; *; /2/. -nqed. - -nlemma subseteq_intersection_r: ∀A.∀U,V,W:Ω^A.W ⊆ U → W ⊆ V → W ⊆ U ∩ V. -/3/. nqed. (* nrecord isomorphism (A, B : setoid) (S: qpowerclass A) (T: qpowerclass B) : CProp[0] ≝ @@ -417,4 +483,36 @@ ncheck (λA:?. ; }. -*) \ No newline at end of file +*) + +(* Set theory *) + +nlemma subseteq_intersection_l: ∀A.∀U,V,W:Ω^A.U ⊆ W ∨ V ⊆ W → U ∩ V ⊆ W. +#A; #U; #V; #W; *; #H; #x; *; /2/. +nqed. + +nlemma subseteq_union_l: ∀A.∀U,V,W:Ω^A.U ⊆ W → V ⊆ W → U ∪ V ⊆ W. +#A; #U; #V; #W; #H; #H1; #x; *; /2/. +nqed. + +nlemma subseteq_intersection_r: ∀A.∀U,V,W:Ω^A.W ⊆ U → W ⊆ V → W ⊆ U ∩ V. +/3/. nqed. + +nlemma cupC : ∀S. ∀a,b:Ω^S.a ∪ b = b ∪ a. +#S a b; @; #w; *; nnormalize; /2/; nqed. + +nlemma cupID : ∀S. ∀a:Ω^S.a ∪ a = a. +#S a; @; #w; ##[*; //] /2/; nqed. + +(* XXX Bug notazione \cup, niente parentesi *) +nlemma cupA : ∀S.∀a,b,c:Ω^S.a ∪ b ∪ c = a ∪ (b ∪ c). +#S a b c; @; #w; *; /3/; *; /3/; nqed. + +ndefinition Empty_set : ∀A.Ω^A ≝ λA.{ x | False }. + +notation "∅" non associative with precedence 90 for @{ 'empty }. +interpretation "empty set" 'empty = (Empty_set ?). + +nlemma cup0 :∀S.∀A:Ω^S.A ∪ ∅ = A. +#S p; @; #w; ##[*; //| #; @1; //] *; nqed. +